Improving Execution Speed of FPGA using Dynamically Reconfigurable Technique

Roel Pantonial, Md. Ashfaquzzaman Khan, <u>Naoto Miyamoto</u>, Koji Kotani, Shigetoshi Sugawa and Tadahiro Ohmi Tohoku University

Motivation of This Work

To Reduce Interconnect Delay in FPGAs **Current FPGA Dynamically Reconfigurable** FPGA(DRFPGA) Context # 0 Longer Interconnection # Shorter Interconnections + # 2 **Temporal Communication** #3 Time In recent LSI manufacturing

Interconnect Delay >> Gate Delay

Long Interconnection → Shorter Interconnections
via Temporal Communication

Dynamic Reconfiguration can Reduce Interconnect Delay in FPGAs!

Dynamically Reconfigurable FPGA (FP-III) and its Design Automation Software (PELOC)

FP-III chip die photo

0.35um CMOS 2P3M 4 Context Planes 24x24 Array of LE Nearest Neighbor Architecture Die Size: 9.86mm□

PELOC view (Processor <u>EL</u>ement <u>LOC</u>ator)

Placing & Routing Results

Number of Interconnections and Necessary Resources were Dramatically Decreased

Measurement Results

We found, for the first time, that the best exec. speed was obtained when multi contexts are used

Relation between Temporal Communication and Interconnections

are Converted to Temporal Communication

Conclusion

- A new DRFPGA has been proposed, by which long interconnection can be converted to much shorter interconnections
- Generally FPGA is said to be faster than DRFPGA, <u>but we discovered cases where</u> <u>multi-context implementation works</u> <u>faster than FPGA</u>
 - Dynamic Reconfiguration Deserves Fresh Attention!