FastPlace3.0: A Fast Multilevel
Quadratic Placement Algorithm

!'_ with Placement congestion Control

Natarajan Viswanathan
Min Pan
Chris Chu

lowa State University

ASP-DAC 2007

Work supported by SRC under Task ID: 1206
and NSF under grant CCF-0540998

i Motivation

Current designs have millions of modules to placed

Placement needs to be run repeatedly during various stages of
the physical synthesis design flow

Mixed-size placement - varied sizes of modules complicates the
placement step

IP blocks etc. in the form of placement blockages / fixed-macros
A high amount of free space for routing, buffer insertion, gate
sizing etc.

Need efficient techniques to handle mixed-size placement,
placement blockages, placement density constraints

Outline of the Presentation

Overview of FastPlace

Congestion-aware Multilevel Global Placement

= Clustering for Placement
=« Improved — Iterative Local Refinement (ILR)

Legalization

= Macro-block Legalization
= Density Aware Standard-cell Legalization

Detailed Placement
Experimental Results

Conclusions

i Review of FastPlace (1.0 and 2.0)

Stage 1: Global Placement

1. Cell Shifting for mixed-size designs
2. Iterative Local Refinement
3. Hybrid Net Model

Stage 2: Legalization

1. Legalize and then fix movable macros
2. Legalize standard cells

Techniques in

Stage 3: Detailed Placement FastPlace 1.0

1. Global Swap

2. Vertical Swap : _
3. Local Re-ordering Techniques in
4. Single-segment Clustering FastPlace 2.0

Overview of FastPlace 3.0

FastPlace 3.0: A Fast Multilevel Quadratic Placement Algorithm
with Placement Congestion Control.

Mixed-size placement
Multilevel global placement
= Two-phase clustering (Netlist and Physical Clustering)
Improved Iterative Local Refinement technique to handle
= Placement blockages
= Placement density constraints
Placement density aware standard-cell legalization

ISPD-2005 Placement Contest Benchmarks

= mPL6: 5.12x faster 2% higher HPWL
= Capol0.2: 11.52x faster 9% better HPWL
= APlace2.0: 16.92x faster 3% better HPWL

i QOutline of the Presentation

= Congestion-aware Multilevel Global Placement

= Clustering for Placement
=« Improved — Iterative Local Refinement (ILR)

Multilevel GP: Framework

Netlist based
Clustering

Netlist of
fine-grain
clusters

Rough Placement

Netlist and Physical
based Clustering

Netlist of
coarse-grain
clusters

GP of
flat netlist

Refine by FastPlace

un-cluster

GP of
fine-grain
clusters

Refine by FastPlace

un-cluster

GP of
coarse-grain

FastPlace

clusters

Clustering for Placement

Incorporate two-phases of clustering
= Total 4x reduction in #objects

Use Best-Choice Clustering with lazy-update speed-up
Strict control on the area of clusters during both phases

Phase 1: Netlist-based Fine-Grain Clustering
V%I\I Wy N = set of nets connecting jand k

@j+a) W _\d\

= only 2-3 cells of original netlist per cluster
= 2X reduction in #objects

= clustering score s(j.,k) = d = degree of net v

Phase 2: Netlist and Physical Coarse-Grain Clustering

= clustering score (netlist weight + satisfy distance threshold)
= 2x reduction in #objects

i [terative Local Refinement (ILR)

= Greedy technigue to simultaneously spread the cells and
reduce wirelength

= Divide the placement region into bins
= Consider moving an object to the 8 neighboring bins

= Compute a score for each direction based on

= Half-perimeter Wirelength (HPWL) reduction
= Bin density at the source and target bins
» Placement blockage score at the source and target bins

= Move in the direction with highest positive score
(Do not move if no positive score)

et il et sl

R R R R

1

1

0

i Contour Map for Fixed-Macros

Smoothing
Filter

0.025

0.05

0.025

0.05

0.7

0.05

0.025

0.05

0.025

i Contour Map for Fixed-Macros

1.00 [0.92 | 0.08 | 0.00 0.90 | 0.72] 0.28 | 0.10
0.92 | 0.85| 0.15 | 0.08 0.72 | 0.61 | 0.39 |0.28
1 iteration 5 iterations
0.08 { 0.15| 0.850.92 0.28 | 0.39 | 0.61 | 0.72
0.00 | 0.08 | 0.92 | 1.00 0.10 [0.28 | 0.72 | 0.90

‘contour matrix —— ‘eontour matric

ARG
dpe
e

0.8 -
06 -
04 -
0.2 -

04

08 [Jo0k
06 | 0

02 - “_“OA

e

N

10

i Score: Move cell i from bin m =2 n

o
p(m):
p(n):
Y-
wl.(m):
wl.(n):
U(m):
U(n):
C(m):
C(n):

Weight for the wirelength component
Weight of the utilization component for bin m
Weight of the utilization component for bin n
Weight for the contour component
Wirelength score for cell i in bin m
Wirelength score for cell i in bin n

Utilization function for bin m

Utilization function for bin n

Contour height at bin m

Contour height at bin n

g(m,n):a(wli(m)—wli(n)) +
(BrU (M) = BpU () +
y(C(m)-C(n))

11

i Placement Density Control

= A popular way to control routing congestion

=« Designers divide the placement region into bins
= Specify placement density constraint for each bin

= Run the placer until the density constraints have been
satisfied

= FastPlace 3.0 uses Iterative Local Refinement (ILR)
to distribute cells among bins to satisfy the density

constraints

« Similar idea used in GP, Legalization, and DP

12

i Congestion Aware ILR

= Consists of two steps
= d-ILR: density-bin based ILR
= r-ILR: regular ILR

« Density-bin constructed based on user input
= for eg: for the ISPD 06 placement contest:
height and width for the d-ILR bin structure
was 10x row height

= Flow:
= First run d-ILR (using d-ILR bin structure)
= Run r-ILR (using progressively smaller bins)

13

-Structure

ILR Bin

i

density ILR

bin structure

{

regular ILR
bin structure

14

:L QOutline of the Presentation

= Legalization

= Macro-block Legalization
= Density Aware Standard-cell Legalization

15

Macro Block Legalization

= Formulated as a fixed-outline floorplanning problem to
resolve overlaps with minimum perturbation

= Sequence-pair (SP) to represent a floorplan

Minimum Perturbation Floorplan Realization Problem
Given: n macros with target coordinates (X.y/) for i =1,...,n and a
sequence-pair (P.0)

Determine: Legalized Coordinates (%.%) s.t. . =X |+|% ~ ¥i]
IS minimized.

For Details:
Natarajan Viswanathan, Min Pan, and Chris Chu, “FastPlace 2.0: An
Efficient Analytical Placer for Mixed-Mode Designs”, pp 195 — 200,

ASP-DAC 2006.
16

17

Macros Before Legalization (ibm10)

08 0 o0 O - 0
: i i
0
. Eu:_unﬂ&w
D D
e By
O
D_u_m__uﬁ__”_n_
GetndifiE ol o
L]
| e = 4
- _H__u O " _”__”_
: 0
n:n _”_”__u_”_
[I
_”__”_u_”_u_u ::ﬂmw_:nn__u ﬁuﬂ_nz
0 o d
o I r.__m__.ﬂ_ =N =!
1 O 0 _u_u_u_u_un__u
. n_n__”_ o 0o 1 T H
7 oonndio anﬁ::
ﬂw_n_ | ilfeli]
i ;
A [
0
i §d ki
u_”mmh_ Izdlm _mum__u_”_
i EuAfilen il :ﬂ
u_u el
HHAS m&_u ~ O _uﬁ__”_”__”_ o O
et a MW__TD_J _Wl_u og
i nf 0 .
gl 0 oo
i
0f O 0

N

18

_“_n__“__”_ m_u_Ln_ | _u__u -
0 d |
O rHH
mmmnxmw
- n: % 1
u| [
_n__m_ m__n__”_ _H__n_u
Oy i
m@@ M%E _H__u
g
0 0 B
] P%_n_:
nm_u%mm_u il

qu gi'g B
0 =
opnton & 59
m| . :D _”___._n_ _”__Mu
et . 2o | :
M, o &
[nﬂ_m__:
[h
ol
O OF

i Macros After Legalization (ibm10)

1

Density Aware Standard-cell Legalization

= Satisfy segment capacities
= Selective Bin-based Standard-cell Movement
= Segment-based Cell Rippling
= Selective Segment-based Cell Movement (spiral)

= Legalize cells within segment

= Set-up

Fix movable macros if any
Bin the placement region

Fragment rows into segments based on placement
blockages.

Find bin utilization and segment capacities
19

Selective Bin-based Standard-cell Movement

Selectively turn on bin-based move around over-utilized
segments

Construct move map based on segment

capacities and placement blockages

= M(m) = 1 if bin m is around a segment
with density > target_density

= M(m) = 0 otherwise or if bin m overlaps
with placement blockage

Use similar scoring function as ILR

Advantages:

= Very less perturbation of the global placement

= Distributes cells evenly within a segment (helps density constraint)
= Fast

20

i Segment-based cell Movement

= Segment Based Rippling
= Consider over-utilized and neighboring segments
= Ripple cells out of segments
« Can increase the utilization of neighboring segments
= Consider wirelength and utilization for score

= In most cases decreases wirelength while satisfying
segment capacities

= Selective Segment-based Cell Movement
= Move cells to closest segment (radial search)
= Used as last resort

21

i Outline of the Presentation

= Detailed Placement

22

Detailed Placement Overview

Perform Single-Segment Clustering
Repeat

Perform G/obal Swap

Perform Vertical Swap

Perform Local Re-ordering
Until no significant improvement
Repeat

Perform Single-Segment Clustering
Until no significant improvement

For Details:
Min Pan, Natarajan Viswanathan, and Chris Chu, “An Efficient and
Effective Detailed Placement Algorithm”, pp 48 — 55, ICCAD 2005.

23

i Outline of the Presentation

= Experimental Results

24

i Experimental Setup

= ISPD-2005 placement contest benchmarks

= ISPD-2006 placement contest benchmarks
(with placement density target constraint)

= 210k — 2.48M movable objects

= All experiments are on a 2.5GHz AMD Opteron 250
machine with 8 GB RAM

25

i ISPD-05 Benchmarks (HPWL)

1000

O mPL6 W Capol0.2 O APlace2.0 W FastPlace3.0

900

800

700

600

500

400

Wirelength (x10e6)

300

200
100 -
0 -

adaptecl adaptec?2 adaptec3 adaptec4 bigbluel bigblue?2 bigblue3 bigblue4

mPL6 / FastPlace3.0 : 0.98

Average Wirelength Ratio: Capo10.2 / FastPlace3.0 : 1.09
APlace2.0 / FastPlace3.0 : 1.03

i ISPD-05 Benchmarks (Runtime)

100

90

80

70

a1 (2]
o o

Runtime (x 1000 sec)
D
o

30

20

10

= mPL6 Capo0l0.2 e=—=APlace2.0 e=FastPlace3.0

adaptecl adaptec?2

bigbluel

adaptec3 adaptec4 bigblue2 bigblue3

bigblue4

Average Runtime Ratio:

mPL6 / FastPlace3.0 :
Capo10.2 / FastPlace3.0 :
APlace2.0 / FastPlace3.0 :

512X
11.52X
16.92 X

27

ISPD-05 Benchmarks (contest)

adaptec2 | adaptec4 | bigbluel | bigblue2 | bigblue3 | bigblue4 Avg
APlace 0.94 0.93 0.99 0.93 0.94 1.00 0.955
FastPlace3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.000
mFAR 0.98 0.95 1.02 1.09 1.00 1.05 1.015
Dragon 1.02 1.00 1.07 1.03 1.00 1.09 1.034
mPL 1.04 1.00 1.03 1.12 0.97 1.09 1.041
Capo 1.07 1.05 1.13 1.11 1.01 1.32 1.115
NTUPlace 1.08 1.03 1.11 1.23 1.08 1.39 1.153
Fengshui 1.32 1.67 1.20 1.84 1.24 1.25 1.420
Kraftwerk 1.69 1.75 1.56 2.08 1.73 1.69 1.749

HPWL Comparison with contest version of placers

No Limit on CPU time for other placers to get the best possible results

28

ISPD 06 contest benchmarks (1)

ad nl n2 n3 n4 nS n6 n’7 Avg.

Kraftwerk 1.01 | 1.19 | 1.00 | 1.00 | 1.01 1.04 | 1.00 | 1.00 | 1.03

mPL6 1.00 | 1.06 | 1.07 | 1.17 | 1.00 1.02 1.00 1.00 1.04

FastPlace3.0 | 1.12 | 1.15 | 0.96 | 1.09 | 0.98 1.11 | 0.96 | 0.93 1.04

NTUPlace2 1.02 | 1.00 | 1.07 | 1.16 | 1.083 1.00 1.04 1.07 1.05

mMFAR 1.09 | 1.23 | 1.09 | 1.16 | 1.09 1.13 1.03 1.04 1.11

APlace3 1.26 | 1.20 | 1.05 | 1.13 | 1.35 1.21 1.06 1.05 1.16

Dragon 1.08 | 1.21 | 1.29 | 1.90 | 1.05 1.13 1.03 1.23 1.24

DPlace 1.26 | 155 | 1.77 | 1.36 | 1.14 | 1.35 1.23 1.25 1.36

Capo 1.16 | 1.57 | 1.64 | 1.44 | 1.22 1.28 1.32 1.46 1.39

Using the ISPD 06 placement contest scoring function
(considering HPWL, Placement Density, Runtime)

ISPD 06 contest benchmarks (2)

. ab nl n2 n3 n4 n5 n6 n7/
Circuit
#Objects | 843k | 330k | 441k | 494k | 646k | 1.23M | 1.25M | 2.51m | A9
FaStggg)e?"o 1973 | 609 816 | 1619 | 878 | 3156 | 2519 | 3279
Kraftwerk 167 | 186 | 123 | 056 | 316 | 235 | 212 | 228 | 1.91x
mPL6 419 | 370 | 747 | 599 | 662 | 391 | 478 | 866 | 5.66x
NTUPlace2 | 532 | 355 | 543 | 410 | 851 | 648 | 550 | 6.55 | 5.68 x
MFAR 348 | 417 | 355 | 183 | 725 | 362 | 482 | 594 | 4.33x
APlace3 | 1027 | 707 | 678 | 7.72 | 17.07 | 10.39 | 11.56 | 16.73 | 10.95 x
Dragon 114 | 162 | 200 | 072 | 169 | 112 | 153 | 3.02 | 1.61x
DPlace 146 | 169 | 784 | 064 | 188 | 144 | 160 | 290 | 2.43x
Capo 493 | 421 | 692 | 375 | 789 | 661 | 734 | 16.76 | 7.30x

Runtime comparison

30

i Outline of the Presentation

= Conclusions

31

Conclusions

FastPlace 3.0: A Fast Multilevel Quadratic Placement
Algorithm with Placement Congestion Control

= Scalable multilevel global placement algorithm
= Two-phase clustering (Netlist and Physical Clustering)
= Improved Iterative Local Refinement technique to handle
= Placement blockages
= Placement density constraints
= Placement density aware standard-cell legalization
= Fast — Takes only about 1%2 hours to place designs with over
2 Million objects (bigblue4, newblue?)

Linux 32-bit and 64-bit binaries available for download at:

http://www.public.iastate.edu/~nataraj/FastPlace.html

32

