Bisection Based Placement for the X Architecture

Satoshi Ono, Sameer Tilak, Prof. Patrick H. Madden

SUNY Binghamton CSD

Introduction

Design size have been increasing
Process rule shrunk

Length of wire is really important
Timing/Delay

Placement/Routing

For most of the history of integrated circuit design, wiring has been rectilinear; horizontal or vertical wires only. -- Manhattan Routing --Non-Manhattan wiring only inserted in some cases during detail routing. Placers have not been targeting non-Manhattan wire length

Non-Manhattan Routing Architectures

- Large scale use proposed in 2000 by Koh and Madden
- X-Architecture announced in 2001

 Allow diagonal wire for routing in addition to vertical and horizontal routing

X Architecture

Rectilinear Minimum Spanning tree

X Architecture

X Architecture

Best, Worst, and Average (Random) Case

Motivation

- Adding diagonal wires should always help wire length
 - But by how much?
 - Is it worth the cost?
- On randomly placed points, we expect an average of 17% improvement
 - Applying X Architecture Steiner tree on real placements reduces only 8% of wirelength comparing with Rectilinear Steiner tree [Koh/Madden GLSVLSI'00]
 - Is it possible to improve on this?
 - Obtaining better wire lengths makes pursuing X routing more worthwhile

Objective

Be REALISTIC

 We want to be neither optimistic or pessimistic about non-Manhattan routing.
Almost all placement tools have been tuned for rectilinear wirelength minimization

Try tuning for non-Manhattan routing, so that we can evaluate the prospects

Evaluation of Patented Approach

Wire length gains have been limited by a lack of demand for diagonal wires

 Solution: orient cut lines in bisection to prefer diagonal arrangements [Teig&Ganley]

Routing Demand control by cut sequence

Routing Demand control by cut sequence

Cut sequence can be used to tune routing demand [Yildiz/Madden DAC'01]

Routing Demand control by cut sequence

Fractional cut

 Traditional Bi-section based placer does not allow to cut the region freely – you must cut region on the standard row line -

 Fengshui 2.0 introduced fractional cut[Agnihotri + ICCAD'03]
You can cut region freely

Diagonal cut is possible

Global placement cutline

M Placement

X Placement

Global placement cutline

M+X Placement

X+M Placement

- Manhattan Cuts -

	XPlace [M]	KraftWe rk	Capo8.6	Dragon 2.23	Feng shui 2.0	mPL 2.0
lbm01	0.52	0.70	0.55	0.58	0.52	0.64
lbm02	1.53	2.15	1.59	1.58	1.47	1.61
lbm07	3.39	5.12	3.70	3.59	3.30	4.07
lbm08	3.73	4.66	3.84	3.82	3.66	4.25
lbm09	3.10	4.26	3.22	3.20	3.01	3.81
Ibm10	5.76	7.61	6.15	6.02	5.67	6.61
Ibm11	4.60	5.80	4.85	4.72	4.59	5.96
Ibm12	8.04	10.41	8.58	8.58	7.75	9.44

*Manhattan Half-Perimeter Wirelength *Our placements are densely packed *feng shui 5.1's legalizer and detail placer is uesed

 Results of Manhattan cut sequences are competitive with other tool

- Non-Manhattan Cuts-

	Μ	X	M+X	X+M	Feng shui 2.0
Ibm01	0.52	0.67	0.65	0.59	0.52
lbm02	1.53	1.83	1.81	1.67	1.47
lbm07	3.39	4.18	4.17	3.74	3.30
lbm08	3.73	4.78	4.77	4.10	3.66
Ibm09	3.10	3.90	3.85	3.74	3.01
Ibm10	5.76	7.48	7.26	6.31	5.67
Ibm11	4.60	5.61	5.48	5.04	4.59
Ibm12	8.04	9.79	9.48	8.67	7.75

*Manhattan Half-Perimeter Wirelength *Our placements are densely packed

*feng shui 5.1's legalizer and detail placer is uesed

Half-Perimeter

Comparing Half-Perimeter, Diagonal cut is worse than Manhattan cut

Experimental Result - Non-Manhattan Steiner Tree Lengths -

		Global Placement						
Benchmark		Manhatta	n Steiner			X Ste	einer	
	М	Х	M+X	X+M	М	Х	M+X	X+M
ibm01	0.62	0.74	0.74	0.67	0.57	0.57	0.63	0.65
ibm02	1.82	2.04	2.05	1.92	1.68	1.73	1.8	1.7
ibm07	3.79	4.5	4.56	4.1	3.48	3.73	3.94	3.57
ibm08	4.46	5.41	5.48	4.77	4.09	4.5	4.73	4.18
ibm09	3.55	4.23	4.24	3.86	3.24	3.48	3.65	3.34
ibm10	6.54	8.09	7.97	7	5.96	6.68	6.87	6.08
ibm11	5.05	5.95	5.85	5.44	4.62	4.89	5.03	4.72
ibm12	9.07	10.6	10.4	9.57	8.28	8.77	8.95	8.36
avg.	1	1.19	1.18	1.07	0.92	0.98	1.02	0.93

	Legalized Placement							
Benchmark		Manhatta	in Steiner			X St	einer	
	М	Х	M+X	X+M	M	X	M+X	X+M
ibm01	0.62	0.75	0.72	0.64	0.57	0.62	0.63	0.57
ibm02	1.82	1.98	2.01	1.86	1.67	1.72	1.77	1.68
ibm07	3.79	4.37	4.48	3.96	3.47	3.71	3.88	3.54
ibm08	4.44	5.26	5.39	4.62	4.07	4.47	4.68	4.14
ibm09	3.55	4.1	4.17	3.73	3.23	3.46	3.6	3.31
ibm10	6.54	7.87	7.85	6.79	5.93	6.66	6.79	6.02
ibm11	5.05	5.77	5.74	5.26	4.6	4.87	4.96	4.67
ibm12	9.07	10.3	10.3	9.34	8.25	8.74	8.87	8.31
avg.	1	1.15	1.16	1.04	0.91	0.98	1.01	0.93

	M Steiner	X Steiner	Improvement
М	1.00	0.92	0.08
X	1.19	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

- M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]
- X Placement prefer more diagonal wires
- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

	M Steiner	X Steiner	Improvement
М	1.00	0.92	0.08
Х	1.19	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

 M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]

X Placement prefer more diagonal wires

- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

	M Steiner	X Steiner	Improvement
М	1.00	0.92	0.08
X	1.19	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

- M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]
- X Placement prefer more diagonal wires
- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

	M Steiner	X Steiner	Improvement
М	1.00	0.92	0.08
Х	1.19	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

 M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]

X Placement prefer more diagonal wires

- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

	M Steiner	X Steiner	Improvement
М	(1.00)	0.92	0.08
Х	1.19	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

 M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]

X Placement prefer more diagonal wires

- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

45 Degree Rotation

Manhattan Placement + Manhattan Steiner VS. X Placement + X Steiner

At best, no wire length change for X routing. Manhattan routing at a severe disadvantage.

	M Steiner	X Steiner	Improvement
М	1.00	0.92	0.08
Х	(1.19)	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

 M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]

X Placement prefer more diagonal wires

- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

	M Steiner	X Steiner	Improvement
М	1.00	0.92	0.08
Х	1.19	0.98	0.18
M+X	1.18	1.02	0.14
X+M	1.07	0.93	0.13

- M Placement takes an advantage of X Steiner tree as reported by [Koh/Madden]
- X Placement prefer more diagonal wires
- X+M seems a possibility
 - Long diagonal wires at the top layer, short Manhattan wires at the lower layers.

Conclusions

Diagonal cut lines did not help

 They put Manhattan routing at a disadvantage, rather than making X routing more effective

Wire length improvements still in the 8% range for X routing

• X has a disadvantage because of more complicated routing, and layer restrictions

Further improvements are still possible

 For example: upcoming ISPD paper from NTU group!

