
Communication Architecture
Synthesis of Cascaded Bus
Matrix

Junhee Yoo*, Dongwook Lee*, Sungjoo Yoo and
Kiyoung Choi*

*Seoul National University, Seoul, Korea

**Samsung Electronics, Yongin, Korea

Slides for ASPDAC 2007

Motivation

master slave

master

master

slave

slave
slave

slave
slave

master slave

(a)

master slave

master

master

slave
slave

slave
slave
slave

master slave

(c)

master slave

master

master

slave
slave
slave
slave
slave

master slave

(b)

Single bus matrix architecture
No bottleneck compared to shared
bus, but number of connections
increase rapidly as design gets
larger

Single bus matrix architecture with
local buses [Pasricha 2006]

The bus matrix’s size has reduced
significantly
However, we can predict that it will
become still too large as design gets
larger

Multiple bus matrix architecture
Can further reduce the bus matrix’s
size (?)

[Pasricha 2006] S. Pasricha, N. Dutt, M. Men-Romdhane, “Constraint-Driven Bus Matrix Synthesis for MPSoC”, in proc.
of ASPDAC, Jan. 2006

Problem Definition

(CTG) You want some masters and
some slaves to communicate to each
other…

(IP information) Where each
components have different clock speeds
and different data width
(Application information) Each traffics
have different bandwidth requirement
and latency requirement

…and what architecture will be
optimal?

In terms of die area/power or
whatsoever, but in this paper, we deal
with bus area.
The generated architecture is based on
AMBA3 AXI components from ARM

master slave

master

master

slave

slave

slave

slave

slave

master slave

master slave

master

master

slave

slave

slave

slave

slave

master slave

?

300MHz, 64-bit

100MHz, 32-bit

300MB/sec read

50MB/sec write,
latency less
than 20 nsec

Simulated Annealing Flow

Generate initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-
architecture

Cost evaluation

Use
new

design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

a

e

c

b

d

a b

c

d e

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

Generate initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-
architecture

Cost evaluation

Use
new

design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

a

e
c

b

d

a b

c
d e

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

Introducing TGE
M1

M2

M3

S1

S2

S3

TGE = { { M1->S1, M1->S2, M1->S3, M2->S3 } ,

{ M1->S2, M1->S3, M2->S3, M3->S2, M3->S3 } }

Each unordered set of traffics (traffic group)
represent a bus matrix, and the traffics
represents all communications that flows on that
bus matrix.

The order between the groups represent the
topological order of the two bus matrices – the
preceding group may have a path to the
succeeding group, but not vice versa.

We added two more parameters – ‘group
clock speed’ and ‘group data width’ which
are the clock speed / data width of the
generated bus matrix.

Generate initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-
architecture

Cost evaluation

Use
new

design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

a

e
c

b

d

a b

c
d e

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

Encoding-to-topology transformation
M1

M2

M3

S1

S2

S3

M1

M2

M3

X1

X2

S1

S2

S3

For any encoding, the generated topology is
always legal
Easily applicable to any other meta-heuristic
method

TGE = { { M1->S1, M1->S2, M1->S3, M2->S3 } ,

{ M1->S2, M1->S3, M2->S3, M3->S2, M3->S3 } }

Transform encoding

Generate initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-
architecture

Cost evaluation

Use
new

design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

a

e
c

b

d

a b

c
d e

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

Create a random group with two or more
traffics
Remove a random traffic from a random group
Merging two random groups into one
Adding all traffics from a group to another
group
Removing all traffics from a group from
another group
Changing a random parameter of the group
(clock speed and/or data width)
Adding/removing all traffics from the same
random master/slave
Changing the order of two random groups

Generate initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-
architecture

Cost evaluation

Use
new

design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

a

e
c

b

d

a b

c
d e

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

IG-to-architecture

Bridges are added when ports or bus matrices
have different characteristics.
Timing analysis is done, and register slices are

added where required.

M1
(200MHz,64bit)

M2
(300MHz, 32bit)

X1
(400MHz, 64bit)

S1
(300MHz, 64bit)

(a)

(b) 400MHz

300MHz

300MHz200MHz

X1
(400MHz, 64bit)

S1
(300MHz, 64bit)

async
bridg
e

2x up-
converter

async
bridge

expander

M1
(200MHz, 64bit)

M2
(300MHz, 32bit)

Generate initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-
architecture

Cost evaluation

Use
new

design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

a

e
c

b

d

a b

c
d e

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

Cost evaluation
Two types of costs – penalty and optimization goal

Penalty
The ‘amount’ of timing violation and traffic
latency violation of the architecture

Optimization goal
Gate count of the architecture

Cost function for annealing
Initially, only penalty
After penalty converges to zero,

Final solution
The solution with the smallest optimization goal
where penalty is zero

penaltyegoalonoptimizaticost ⋅= _

Experiments
Used 120 randomly generated
synthetic CTGs

There weren’t enough CTGs
available that were large enough to
show the usefulness of this flow
Smallest ones had 18 ports, while
largest ones had 100+ ports

Execution time took around 10
minutes for smallest ones, and 2
hours for largest ones

cpu1

cpu2

peri1

peri4

sdram

sram1

sram2

sram3

sram4

peri1

peri2

peri3

peri4

peri5

cpu3

peri2

peri3

peri6

cpu1

cpu2

dsp10

cpu3

sdram

sram10

…

peri1

…

peri1

peri2…

sram1…

~~

The other methods for comparison

master slavePL300

master PL300

master
PL300

PL300

PL300

slave

slave

slave

slave

slave
master

PL300
slave

2BM

SBM master

master

master

master

slave

PL300

PL300

slave
slave
slave
slave

slavePL300
slave

PL300

PL300

traditional single bus matrix
with shared buses

A trivial extension of SBM

Two-phase:
Use 2BM or SBM for the 70% of annealing, and then change encoding
to TGE
Searches a smaller space initially (so that it can converge quickly), but
utilizes the larger design space later on

Experiment results
Method SBM 2BM TGE Two-

phase

Average size (geometric mean) - 6.403 7.172 5.325

Number of successful synthesizes 78 120 119 120

number of best results among 4
methods 33 1 31 55

All designs

Experiment results
Method SBM 2BM TGE Two-

phase

Average size (geometric mean) 2.991 3.641 3.097 3.159

Number of successful synthesizes 27 27 27 27

number of best results among 4
methods 9 0 4 14

Average size (geometric mean) - 9.434 15.799 8.309

Number of successful synthesizes 2 22 22 22

number of best results among 4
methods 1 0 5 16

large 22
designs
(> 45 ports)

small 27
designs
(< 25 ports)

Results are not so good for smaller designs
The search space is much bigger than a single bus matrix, thus it
takes more iterations to converge to a reasonable solution

…but tends to get better for larger designs
For larger designs, cascading greatly help increasing scalability

One example result
A simplified topology of an architecture with 32 masters and 75
slaves.

master
…

master

master

PL300

PL300
PL300

PL300

PL300 PL300

PL300

PL300

…

master

master
…

master

slave

slaveslave

slave

slave

slave

slave

slave

slave

slave

master
master

…

…

…

PL300

PL300

PL300

PL300

PL300 PL300

PL300
master

…
master

master
…

master

master
…

master

slave

slave

…

slave

slave

…

slave

slave

…

slave

slave

…

Using the TGE method, an architecture with 4 cascaded stages was
generated.
The 2bm method had to use large bus matrices on the slave side,
where a single bus matrix connects to 20+ slaves.
Gate count ratio is 0.81:1

TGE-based 2BM-based

Conclusions
We propose a new synthesis method for cascaded
bus matrices

Due to a larger solution space, It gives better results on
large designs.
Probably possible to extend to network-on-chip designing

Need much more improvements
Need to consider other meta-heuristic methods (genetic
algorithm or ant colony optimization)
Need more accurate performance/area/power modeling
methods

	Communication Architecture Synthesis of Cascaded Bus Matrix
	Motivation
	Problem Definition
	Simulated Annealing Flow
	Introducing TGE
	Encoding-to-topology transformation
	Transform encoding
	IG-to-architecture
	Cost evaluation
	Experiments
	The other methods for comparison
	Experiment results
	Experiment results
	One example result
	Conclusions

