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Motivation
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Single bus matrix architecture
No bottleneck compared to shared 
bus, but number of connections 
increase rapidly as design gets 
larger

Single bus matrix architecture with 
local buses [Pasricha 2006]

The bus matrix’s size has reduced 
significantly
However, we can predict that it will 
become still too large as design gets 
larger

Multiple bus matrix architecture
Can further reduce the bus matrix’s 
size (?)

[Pasricha 2006] S. Pasricha, N. Dutt, M. Men-Romdhane, “Constraint-Driven Bus Matrix Synthesis for MPSoC”, in proc. 
of ASPDAC, Jan. 2006 



Problem Definition

(CTG) You want some masters and 
some slaves to communicate to each 
other…

(IP information) Where each 
components have different clock speeds 
and different data width
(Application information) Each traffics 
have different bandwidth requirement 
and latency requirement

…and what architecture will be 
optimal?

In terms of die area/power or 
whatsoever, but in this paper, we deal 
with bus area.
The generated architecture is based on 
AMBA3 AXI components from ARM
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300MHz, 64-bit

100MHz, 32-bit

300MB/sec read

50MB/sec write, 
latency less 
than 20 nsec



Simulated Annealing Flow
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Introducing TGE
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TGE = { { M1->S1, M1->S2, M1->S3, M2->S3 } ,

{ M1->S2, M1->S3, M2->S3, M3->S2, M3->S3 } }

Each unordered set of traffics (traffic group) 
represent a bus matrix, and the traffics 
represents all communications that flows on that 
bus matrix.

The order between the groups represent the 
topological order of the two bus matrices – the 
preceding group may have a path to the 
succeeding group, but not vice versa.

We added two more parameters – ‘group 
clock speed’ and ‘group data width’ which 
are the clock speed / data width of the 
generated bus matrix.
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Encoding-to-topology transformation
M1

M2

M3

S1

S2

S3

M1

M2

M3

X1

X2

S1

S2

S3

For any encoding, the generated topology is 
always legal
Easily applicable to any other meta-heuristic 
method

TGE = { { M1->S1, M1->S2, M1->S3, M2->S3 } ,

{ M1->S2, M1->S3, M2->S3, M3->S2, M3->S3 } }



Transform encoding
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Create a random group with two or more 
traffics
Remove a random traffic from a random group
Merging two random groups into one
Adding all traffics from a group to another 
group
Removing all traffics from a group from 
another group
Changing a random parameter of the group
(clock speed and/or data width)
Adding/removing all traffics from the same 
random master/slave
Changing the order of two random groups
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IG-to-architecture

Bridges are added when ports or bus matrices 
have different characteristics.
Timing analysis is done, and register slices are 

added where required.
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Cost evaluation 
Two types of costs – penalty and optimization goal

Penalty
The ‘amount’ of timing violation and traffic 
latency violation of the architecture

Optimization goal
Gate count of the architecture

Cost function for annealing
Initially, only penalty
After penalty converges to zero, 

Final solution
The solution with the smallest optimization goal 
where penalty is zero

penaltyegoalonoptimizaticost ⋅= _



Experiments
Used 120 randomly generated 
synthetic CTGs

There weren’t enough CTGs
available that were large enough to 
show the usefulness of this flow
Smallest ones had 18 ports, while 
largest ones had 100+ ports

Execution time took around 10 
minutes for smallest ones, and 2 
hours for largest ones
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The other methods for comparison
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traditional single bus matrix 
with shared buses

A trivial extension of SBM

Two-phase:
Use 2BM or SBM for the 70% of annealing, and then change encoding 
to TGE
Searches a smaller space initially (so that it can converge quickly), but 
utilizes the larger design space later on



Experiment results
Method SBM 2BM TGE Two-

phase

Average size (geometric mean) - 6.403 7.172 5.325

Number of successful synthesizes 78 120 119 120

number of best results among 4 
methods 33 1 31 55

All designs



Experiment results
Method SBM 2BM TGE Two-

phase

Average size (geometric mean) 2.991 3.641 3.097 3.159

Number of successful synthesizes 27 27 27 27

number of best results among 4 
methods 9 0 4 14

Average size (geometric mean) - 9.434 15.799 8.309

Number of successful synthesizes 2 22 22 22

number of best results among 4 
methods 1 0 5 16

large 22 
designs 
( > 45 ports)

small 27 
designs
( < 25 ports)

Results are not so good for smaller designs
The search space is much bigger than a single bus matrix, thus it 
takes more iterations to converge to a reasonable solution

…but tends to get better for larger designs
For larger designs, cascading greatly help increasing scalability



One example result
A simplified topology of an architecture with 32 masters and 75 
slaves.
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Using the TGE method, an architecture with 4 cascaded stages was
generated.
The 2bm method had to use large bus matrices on the slave side, 
where a single bus matrix connects to 20+ slaves.
Gate count ratio is 0.81:1

TGE-based 2BM-based



Conclusions
We propose a new synthesis method for cascaded 
bus matrices

Due to a larger solution space, It gives better results on 
large designs.
Probably possible to extend to network-on-chip designing

Need much more improvements
Need to consider other meta-heuristic methods (genetic 
algorithm or ant colony optimization)
Need more accurate performance/area/power modeling 
methods
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