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Robust Analog Circuit Sizing Problem

Problem Definition
Given a circuit topology and a set of specification
requirements:
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Constraint Units Spec.

Device Width µm ≥ 2.0
Device Length µm ≥ 1.0
Estimated Area µm2 minimize
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CMRR dB ≥ 75

Neg. PSRR dB ≥ 80
Power mW ≤ 3

Noise, Flicker nV/
√

Hz ≤ 800

Find the values of design variables that meet the
specification requirements in worst case scenarios and
optimize the circuit performance.
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Robust Optimization Formulation

This problem can be formulated as:

minimize supq∈Q f0(x , q)

subject to fj(x , q) ≤ 0
∀q ∈ Q and j = 1, 2, · · · , m,

where
x ∈ Rn represents a set of design variables (such as L, W ),
q represents a set of varying parameters (such as TOX )
fj ≤ 0 represents the j th specification requirement (such as
phase margin ≥ 60◦),
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Geometric Programming in Standard Form

We further assume that fi(x , q)’s are convex for all q ∈ Q
because of geometric programming (GP) technique.
Geometric programming is an optimization problem that
has the following standard form:

minimize p0(y)
subject to pi(y) ≤ 1, i = 1, . . . , l

gj(y) = 1, j = 1, . . . , m
yk > 0, k = 1, . . . , n,

where
pi ’s are posynomial functions and gj ’s are monomial
functions.
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Posynomial and Monomial Functions

A monomial function is simply:

g(y1, . . . , yn) = cyα1
1 yα2

2 · · · yαn
n , yk > 0.

where c is non-negative and αk ∈ R.
A posynomial function is a sum of monomial functions:

p(y1, . . . , yn) =
t∑

s=1

csyα1,s
1 yα2,s

2 · · · yαn,s
n , yk > 0,

A monomial can also be viewed as a special case of
posynomial in which there is only one term of the sum.
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Geometric Programming in Convex Form

Many engineering problems can be formulated as GP.
A Matlab package “GGPLAB” and an excellent tutorial
material are available from Boyd’s website.
GP can be converted into a convex form by changing of
variables xk = log(yk ) and replacing pi with log pi :

minimize log p0(exp(x))
subject to log pi(exp(x)) ≤ 0, i = 1, . . . , l

aT
j x + bj = 0, j = 1, . . . , m

where
exp(x) = (ex1 , ex2 , · · · , exn), aj = (α1,j , · · · , αn,j) and
bj = log(cj).
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Robust Geometric Programming

GP in the covex form can be solved efficiently by interior
point methods.
In robust version, coefficients cs are functions of q.

The robust problem is still
convex, but non-differentiable in
general. Moreover, there are an
infinite number of constraints.
Alternative approach: Ellipsoid
Method.
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Basic Idea of Ellipsoid Method

Idea: construct an ellipsoid that bounds the optimal
solution.
At the beginning, an initial ellipsoid is given which is large
enough to contain the optimal solution.
For each iteration, divides the current ellipsoid into two
parts and constructs a new smaller ellipsoid that includes
only one of the two parts according to xc , the center of the
ellipsoid (see the next slide)
The process is repeated until the ellipsoid is small enough,
or no feasible solution is detected.
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Basic Idea of Ellipsoid Method (Cont’d)

For each iteration, divides the current
ellipsoid into two parts in such a way
that:

if xc is infeasible (see the figure),
select the part that contains the
feasible region.
if xc is feasible, select the part
that contains the optimal solution.

gTx > b

gTx < b

Cut: gTx = b

Current ellipoid

Feasible region

New ellipoid
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Ellipsoid Method for Robust Convex Programming

1: while not converge do
2: if for some j , supq∈Q fj(xc , q) > 0 then /* xc infeasible */
3: let fmax(x) = arg supq∈Q fj(xc , q).
4: find g = ∇fmax(xc);
5: if fmax(xc)−

√
gT Ag > 0 then

6: return infeasible.
7: end if
8: else /* xc feasible */
9: let fmax(x) = arg supq∈Q f0(xc , q).

10: find g = ∇fmax(xc);
11: if

√
gT Ag < tol then

12: return.
13: end if
14: end if
15: update Ellipsoid(xc , A).
16: end while
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How to find supq∈Q fj(x , q) efficiently?

supq∈Q fj(x , q) is in general difficult to obtain.
Provided that variations are small or nearly linear, we
propose using Affine Arithmetic (AA) to solve this problem.
Features of AA:

Handle correlation of variations by sharing noise symbols.
Enabling technology: template and operator overloading
features of C++.
A C++ package “Libaffa” is publicly available.
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Affine Arithmetic for Worst Case Analysis

An uncertain quantity is represented in an affine form
(AAF):

â = a0 + a1ε1 + a2ε2 + · · ·+ akεk = a0 +
k∑

i=1

aiεi ,

where εi ∈ [−1, 1] is called noise symbol.
Exact results for affine operations (â + b̂, â− b̂ and α · â)
Results of non-affine operations (such as â · b̂, â/b̂,
max(â, b̂), log(â)) are approximated in an affine form.
AA has been applied to a wide range of applications
recently when process variations are considered.
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Affine Arithmetic for Optimization

In our robust GP problem:
First, represent every elements in q in affine forms.
For each ellipsoid iteration, f (xc , q) is obtained by
approximating f (xc , q̂) in an affine form:

f̂ = f0 + f1ε1 + f2ε2 + · · ·+ fkεk .

Then the maximum of f̂ is determined by:

εj =

{
+1 if fj > 0
−1 if fj < 0

j = 1, · · · , k .
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Example: CMOS Two-Stage Op-Amp

L1 = L2

L3 = L4 = L6 = L12 = L13

L5 = L7 = L8 = L9

L10 = L11 = L14

W1 = W2

W3 = W4 = (A/2) ·W13

W5 = A ·W13

W6 = B ·W13

W7 = B ·W8

W9 = W8

W11 = W10

W12 = 4W13
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Performance Specification

Constraint Units Spec.
Device Width µm ≥ 2.0
Device Length µm ≥ 1.0
Estimated Area µm2 minimize
Input CM Voltage x VDD [0.45, 0.55]
Output Range x VDD [0.1, 0.9]
Gain dB ≥ 80
Unity Gain Freq. MHz ≥ 50
Phase Margin degree ≥ 60
Slew Rate V/µs ≥ 50
CMRR dB ≥ 75
Neg. PSRR dB ≥ 80
Power mW ≤ 3
Noise, Flicker nV/

√
Hz ≤ 800
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Example: Open-Loop Gain

Open-loop gain Av can be approximated as a monomial
function:

Av =
2Cox

(λn + λp)2

√
µnµp

W1W6

L1L6I1I6

where I1 and I6 are monomial functions.
Corresponding C++ code fragment:
// Open Loop Gain
monomial<AAF> OLG =
sqrt(KP*KN*W[1]/L[1]*W[6]/L[6]/I[1]/I[6])

*2.0/(LAMBDAN+LAMBDAP)/(LAMBDAN+LAMBDAP);
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Results of Design Variables

Variable Units GGPLAB (Std.) Our (Std.) Robust
W1 µm 44.8 44.9 45.4
W8 µm 3.94 3.98 3.8
W10 µm 2.0 2.0 2.0
W13 µm 2.0 2.0 2.1
L1 µm 1.0 1.0 1.0
L8 µm 1.0 1.0 1.0
L10 µm 1.0 1.0 1.0
L13 µm 1.0 1.0 1.0
A N/A 10.4 10.3 12.0
B N/A 61.9 61.3 69.1
Cc pF 1.0 1.0 1.0
Ibias µA 6.12 6.19 5.54
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Performances

Performance (units) Spec. Std. Robust
Estimated Area (µm2) minimize 5678.4 6119.2
Output Range (x VDD) [0.1,0.9] [0.07,0.92] [0.07,0.92]
Comm Inp Range (x VDD) [0.45,0.55] [0.41,0.59] [0.39,0.61]
Gain (dB) ≥ 80 80 [80.0, 81.1]
Unity Gain Freq. (MHz) ≥ 50 50 [50.0, 53.1]
Phase Margin (degree) ≥ 60 86.5 [86.1, 86.6]
Slew Rate (V/µs) ≥ 50 64 [66.7, 66.7]
CMRR (dB) ≥ 75 77.5 [77.5, 78.6]
Neg. PSRR (dB) ≥ 80 83.5 [83.5, 84.6]
Power (mW) ≤ 3 1.5 [1.5, 1.5]
Noise, Flicker (nV/

√
Hz) ≤ 800 600 [578,616]
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Conclusions

Our ellipsoid method is fast enough for practical analog
circuit sizing (take < 1 sec. running on a 3GHz Intel CPU
for our example).
Our method is reliable, in the sense that the solution, once
produced, always satisfies the specification requirement in
the worst case.
Source code is available at http://sme.fudan.edu.cn/
faculty/personweb/luweicheng/ellipsoid+AA/
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S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi.
A tutorial on geometric programming.
Available at http:
//www.stanford.edu/~boyd/gp_tutorial.html.
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