

# Modeling Sub-90nm On-Chip Variation Using Monte Carlo Method for DFM

#### Jun-Fu Huang, Victor C.Y. Chang, Sally Liu, Kelvin Y.Y. Doong\*, and <u>Keh-Jeng Chang</u>\*\*

SPICE Core Department, TSMC, Hsinchu Science-Based Industrial Park, Taiwan

- \* PF2, R&D Division, TSMC, Hsinchu Science-Based Industrial Park, Taiwan
- \*\* Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

# Acknowledgements

- The authors want to express their gratitude to the logistic supports of TSMC management during this research experiment.
- They also want to acknowledge the helps of Dr. Li-Fu Chang of Clear Shape Technologies.

# Outline

- Random vs. systematic BEOL variations
- BEOL profile based random variations
- Monte Carlo (MCGRC) simulations
- 2-dimensional capacitances
- 3-dimensional capacitances
- Validating corners for SSTA
- Conclusion

# **Random vs. Systematic BEOL Variations**

- BEOL profiles are the geometrical dimensions and material properties of the "back-end of the line," i.e. the interconnects.
- Systematic variations, deterministic in nature, with a varying trend and pattern of BEOL profiles
  - Methods to correctly include OPC, dummy fill, etc.
- Random variations, a stochastic phenomenon without a clear trend or pattern of BEOL profiles
  - Statistical modeling and timing closure for chip designs.

Ref. [1] [2]

# **Targeting BEOL Random Variations**

- Replicating structures with identical environments;
- Avoiding systematic variations;
- Avoiding spatial variations;
- Avoiding measurement noises;
- Concentrating on on-chip variations.

# **Profiling the Cu-Based Node**



Source: Unpublished TSMC 2001 document

# Monte Carlo (MCGRC) Simulations

- Random parameters of BEOL profiles that affect capacitance and resistance :  $(-3\sigma +3\sigma)$ 
  - Top and bottom plates/grids thickness plus pitch when 3D
  - Metal signal lines' thickness and pitch
  - $\blacksquare$  Thickness /  $\epsilon_{\rm r}$  of IMD between top and bottom plates



# **Three Main Experimental Structures**

- Dense 2-D RC structures
  - Signal lines between two adjacent plates
- "Sparse" 2-D RC structures
  - Signal lines between two far-away plates
- 3-D structures
  - ASIC-style real 3-D lines in 3-D environments



# **2-Dimensional Capacitances**

Structure A - Conductors array above an infinite plate:



Structure B - Conductors array between two infinite plates:



Source: Unpublished TSMC 2001 document

# **RSS of BEOL Profiles for MCGRC**

Skew all IMD between the top plate and the lines based on RSS

 Skew all IMD between the lines and the bottom plate based on RSS.



#### **A 3-Dimensional Structure**



Ref: [4]

#### The Cross Section of the 3-D Structure



# Note: $M_{i-1}$ , $M_i$ , $M_{i+1}$ , $M_{i+2}$ , and the surrounding IMD layers are all 3-D and their profiles are varying.

#### **3-D Random Capacitance Variations**



Jan. 23, 2007, P. 13

#### **Recently Published BEOL Variations**



Ref. [3]

# **Measured BEOL Variation Patterns**



# **MCGRC BEOL Variation Patterns**



Note: The above should replace Figure 10 of Page 224, ASPDAC07.

# **Revising Our Corner Models**



The above revision happens for sparse and wide metals.

# **Our Method Leading to SSTA**

*(a)* 



# Validating Corners for SSTA



# Conclusion

- Successful Monte-Carlo Guided RC Simulations help revise RC corners for sparse and wide metals
- New high-throughput servers help the MCGRC performance and help save test chip designs and costs
- Extracted random variations can be used for SSTA for DFM.

#### References

- [1] K. Chang, "Accurate onchip variation modeling to achieve design for manufacturability." *Proc. 4th IEEE IWSOC*, Banff, 2004.
- [2] J. Xiong *et al.*, "Robust extraction of spatial correlation," *Proc. IEEE ISPD*, San Jose, 2006.
- [3] S. Sankaran *et al.*, "A 45 nm CMOS node Cu/Lowk/Ultra Low-k PECVD SiCOH (k=2.4) BEOL technology," *Proc. IEEE IEDM*, San Francisco, 2006.
- [4] TSMC, Foundry Watch, Hsinchu, April 2002.