<u>clear shape</u> technologies

DFM reality in Sub-Nanometer IC Design

Dr. Nishath Verghese VP of Engineering nashv@clearshape.com

Dr. Philippe Hurat Sr. Dir. Technical Marketing phurat@clearshape.com

Move from ideal-GDSII to Model based Silicon Accurate Design Outline of DFM reality in Sub-Nanometer IC Design

65nm Technology Trends

Addressing 65nm Challenges during Design

Sub-Nanometer Failures Cause Systematic Yield Loss

Systematic Yield is now Dominant

What you design is **NOT** what you print on Silicon

Catastrophic failure due to flaring

Gate uniformity

- DRC is not sufficient anymore
- Risk costly respins or poor utilization of process
- Need to design tools to prevent catastrophic systematic failures

Catastrophic Failures Impact Yield

Sub-Nanometer Failures Cause Parametric Yield Loss

- Increased sensitivity to manufacturing variations on both devices and interconnect
- Current design flows based on ideal GDSII, margins and rules translates in large margins, over-design and long timing closure or undetected parametric failures

Context dependent Variability cannot be Addressed by Rules and Margins

Traditional ideal-GDSII based design methodology is failing....

Designers need to move from ideal GDSII to contour-based design tools to predict nanometer silicon behavior

- Si-accuracy requires upfront FAB validation
- Must work with traditional design flows
- Library, IP, and Full-chip level
- Runtime in hours for full-chip
- Manufacturing/OPC <u>TOOL</u> independent
- Address both catastrophic and parametric yield issues

Design Infrastructure Evolution to Predict Mfg. Variations and their Impact on the Design

Disruptive Technology to Improve Yield without Disrupting Design Flows

Outline of DFM reality in Sub-Nanometer IC Design

65nm Technology Trends

Addressing 65nm Challenges during Design

Contour Prediction Models Enable Physical and Electrical DFM Closure during Design

Contour-based Extraction Delivers Silicon-Accurate Parametric Analysis

Silicon Validation of Contourbased Device Modeling

 Generate Contour for Poly flaring structures

- Compared current predicted with contourbased device model and silicon measurement
- Must take into account electrical behavior of sub-nanometer transistors

Courtesy of a 65nm major semiconductor vendor, Clear Shape partner

Predicted silicon within 2%

Silicon-Proven Device Modeling

Contour-based Analysis Detects and Reduces Catastrophic Systematic & Parametric Variations

 65nm Technology Trends
Addressing 65nm Challenges during Design

Designers Need Universal Solutions to Address Systematic and Parametric Failures

Contour-based Design Manufacturability Checker

- Need fast and accurate hotspot detection and contour prediction
 - Full-chip, blocks or cells in hours!
- Easy to use with DRC-like use-model
- Endorsed by foundries and fabs
- OPC-tool independent

Contour-based Variability Analysis

- Predict impact of device and interconnect variations during design
- Silicon-proven device modeling
- Remove margins
- Accelerate timing closure
- Better Yield

<u>clear shape</u> technologies

DFM reality in Sub-Nanometer IC Design

Dr. Nishath Verghese VP of Engineering nashv@clearshape.com

Dr. Philippe Hurat Sr. Dir. Technical Marketing phurat@clearshape.com

Move from ideal-GDSII to Model based Silicon Accurate Design