Recent Research and Emerging Challenges in Physical Design for Manufacturability/Reliability

Chung-Wei Lin¹, Ming-Chao Tsai², Kuang-Yao Lee², Tai-Chen Chen¹, Ting-Chi Wang², and Yao-Wen Chang¹

> ¹Graduate Institute of Electronics Engineering National Taiwan University

> > ²Department of Computer Science National Tsing Hua University

Outline

Outline

Introduction

- As IC process geometries scale down, the industry faces severe challenges in manufacturability and reliability.
 - _ Lithography
 - Chemical Mechanical Polishing (CMP)
 - Via failure

____...

- Antenna effect
- Resolution enhancement techniques (RETs) are employed to achieve better lithographic printability.
 - Optical proximity correction (OPC)
 - Phase-shifting mask (PSM)
 - Off-axis illumination (OAI)

• OPC is done by adding or subtracting some features near main shapes.

PSM

- PSM generates the phase difference to improve the aerial image.
 - Alternative PSM (AltPSM): Assign clear fields to opposite phases.
 - Attenuated PSM (AttPSM): Allow 5% 10% of light to penetrate the "opaque" part of a mask.

CMP

- Lithographic depth of focus (DOF) is limited, and therefore the thickness variation of a wafer must be strictly controlled.
- Post-CMP thickness is sensitive to layout density.
- A popular solution:
 - Dummy metal insertion

Larger density variations among neighboring sub-regions lead to more significant post-CMP thickness irregularities.

Via failure

- Vias may fail during fabrication or later
- A popular solution:
 - Double-via insertion: adding redundant vias to serve as faulttolerant substitutes

Double-Via Insertion

Antenna Effect

- During the plasma process, heavily accumulated charges on long floating interconnects will damage the gate oxide of active devices.
- Popular solutions:
 - Jumper insertion
 - Diode insertion

Accumulated charge damages the gate

Outline

OPC-Aware Maze Routing

- Huang and Wong, "Optical proximity correction (OPC)friendly maze routing," DAC-04.
 - It is a pioneering work on OPC-friendly maze routing based on the Lagrangian relaxation formulation.
 - The router handles only hundreds of two-pin connections.
- Wu et al., "Maze routing with OPC consideration," ASP-DAC-05.
 - Two OPC-aware routing problems are formulated and solved by modifying the Lee algorithm.
 - The local OPC cost of each routing grid cell is constrained as well.

OPC-Aware Multilevel Gridless Routing

- Chen and Chang, "Multilevel full-chip gridless routing considering optical proximity correction," ASP-DAC-05.
 - It can handle non-uniform wire widths and consider routability and OPC simultaneously.
 - The OPC cost of a line is defined as the number of added features.
 - It not only efficiently obtains better routing solutions with 100% routing completion, but also archives an effective reduction of OPC features.

RET-Aware Routing Using Simulations

- Mitra et al., "RADAR: RET-aware detailed routing using fast lithography simulations," DAC-05.
 - An RET-aware detailed router is developed to enhance the overall printability.
 - After the initial routing result, a fast lithography simulation is applied to introduce the lithography hotspot map (LHM).
 - According to the LHM, the router generates routing blockages for the stage of ripup and reroute.

2D SRAF Placement by Voronoi Diagram

- Mukherjee et al., "The problem of optimal placement of sub-resolution assist features (SRAF)," SPIE-05, vol. 5754.
 - The Voronoi diagram is used to prevent possible conflicts in a twodimensional SRAF placement.

SRAFS One-Dimensional Rules

Traditional Method

Voronoi Diagram

2D SRAF Placement by Model Evaluations

- Barnes et al., "Model-based placement and optimization of sub-resolution assist features," SPIE-06, vol. 6154.
 - A model-based conflict resolution is performed, also to prevent possible conflicts in a two-dimensional SRAF placement.

Phase Conflict Problem in PSM

- Phase conflict problem:
 - A pair of phase shifters of both sides of each critical feature must be assign to opposite phases. This phase assignment is not always achievable.

Phase Conflict Removal (1/2)

- Berman et al., "Optimal phase conflict removal for layout of dark field alternating phase shifting masks," TCAD-2K, vol. 18.
 - A layout modification and phase-assignment algorithm is presented for dark-field AltPSM.
 - The algorithm first constructs a graph to account for phase conflicts, and then deletes a set of edges with the minimum total weight to remove odd cycles as many as possible.

Phase Conflict Removal (2/2)

- Chiang et al., "Fast and efficient phase conflict detection and correction in standard-cell layouts," ICCAD-05.
 - A new algorithm is presented to solve the phase-conflict problem for the bright-field AltPSM.
 - The problem is formulated as a minimum weighted conflict-cycle removal problem.
- Cao et al., "Library cell layout with Alt-PSM compliance and composability," ASP-DAC-05.
 - The phase-conflict problems are divided into intra-cell compliance and inter-cell composability problems from the viewpoint of celllibrary design.
 - Both the problems are formulated as Boolean satisfiability (SAT) problems solved by a SAT solver.

Phase Correct Routing

- McCullen, "Phase correct routing for alternating phase shift masks," DAC-04.
 - A phase-correct routing algorithm for the dark-field AltPSM is proposed.
 - Some phase conflicts are solved by widening the distance between two line ends, or moving the wiring jog to another layer.

CMP

- Li et al., "Multilevel full-chip routing with testability and yield enhancement," SLIP-05.
 - It is the first routing system addressing the CMP induced variation.
 - By setting the desired density in the cost function of global routing, the routing results have more balanced interconnect distribution.
- Cho et al., "Wire density driven global routing for CMP variation and timing," ICCAD-06.
 - It considers CMP variation during global routing.
 - A predicted CMP density model is empirically developed.
 - A minimum pin-density algorithm is proposed to reduce the maximum wire density.
 Path A

Double-Via Aware Maze Routing

- Xu et al., "Redundant-via enhanced maze routing for yield improvement," ASP-DAC-05.
 - It is the first work to consider double-via insertion during maze routing.
 - A grid based sequential routing algorithm is proposed while considering the feasibility of redundant via insertions.
 - A multi-objective maze routing problem is formulated and solved by Lagrangian relaxation.

Double-Via Aware Routing

- Chen et al., "Novel full-chip gridless routing considering double-via insertion," DAC-06.
 - The router applies a routability-driven multi-level routing framework.
 - The cost of a net is defined as a weighted sum of the number of vias and related penalty for the net.
 - A post-layout double-via insertion algorithm based on bipartite graph matching, is also proposed.

Post-Layout Double-Via Insertion

- Lee and Wang, "Post-routing redundant via insertion for yield/reliability improvement," ASP-DAC-06.
 - The double-via insertion problem is formulated as a maximum independent-set (MIS) problem and solved by heuristic.
- Luo et al., "Yield-preferred via insertion based on novel geotopological technology," ASP-DAC-06.
 - The single vias of a design is considered one by one to perform redundant-via insertion.
- Lee et al., "Post-routing redundant via insertion and line end extension with via density consideration," ICCAD-06.
 - It addresses the problem of simultaneously performing redundantvia insertion and line-end extension under via-density consideration.

Diode/Jumper Insertion for Antenna Effect

- Su and Chang, "An exact jumper insertion algorithm for antenna effect avoidance/fixing," DAC-05
 - The jumper insertion for antenna avoidance/fixing is formulated as a tree-cutting problem.
 - It is shown that the tree-cutting problem exhibits the properties of optimal substructures and greedy choices.
- Jiang and Chang, "An optimal simultaneous diode/jumper insertion algorithm for antenna fixing," ICCAD-06.
 - An optimal simultaneous diode/jumper insertion algorithm is presented based on a minimum-cost network-flow formulation,
 - It achieves much higher antenna fixing rates than the other works with jumper insertion or diode insertion alone.

Outline

Correlation of Diode/Jumper Insertion for Antenna Effect

1. OPC-Aware Placement

- Placement results affect the mask design and the final yield.
- An OPC-friendly placement can greatly reduce the computational time and the size of mask database.

2. RET-Aware Routing

- Although RET-aware routing has been studied to some degree, there is still much room for research in this topic.
 - It is desired to develop a technique that can accurately predict RET behaviors.
 - The router can consider OPC, PSM, or more than one RET at the same time.
- Since the simulation for RET behaviors is very timeconsuming, the efficiency should always be considered.

3. RDR-Aware Routing

- Restricted design rules (RDRs) appears to enhance manufacturability by restricting produced layouts.
 - Using only regular features in a layout will improve lithographic printability and make RETs easier to implement.
 - Since over-restricted rules may decrease the performance and increase the area, it is difficult to strictly follow RDRs in practice.
- An appropriate RDR-aware router should:
 - Follow RDRs in lithographically critical regions, and
 - Allow some exceptions of RDRs in non-critical regions to optimize the performance and the chip area.

They are restricted by RDRs to be placed on the fixed pitch.

An appropriate router should consider other metrics.

4. **PSM-Aware Layout Modification**

- Existing approaches solve this problem in two separate steps: deleting a set of edges with minimum total cost from the graph to remove odd cycles, and then modifying the layout according to the removed edges.
 - However, they cannot guarantee that the layout can be always modified to comply with these edge deletions without enlarging the layout size.
- It is still in need to develop an algorithm that can simultaneously consider odd cycle removal and layout modification.

5. Hybrid OPC Modeling

- There are two general types of OPC systems, rule-based OPC and model-based OPC.
 - A rule-based OPC determines how to apply OPC by given rules.
 - A model-based one used mathematical models of the fabrication process.
- There is a trade-off between accuracy and efficiency.
 - A rule-based OPC is usually more efficient but less accurate than a model-based OPC.
- A hybrid OPC balancing the two important factors is desired.
 - It can also play an important role to guide an OPC-aware router with sufficient accuracy and efficiency at the same time.

6. Two-Dimensional SRAF Optimization

• To prevent two-dimensional SRAF placement conflicts, existing works apply the Voronoi diagram or a model-based conflict resolution.

Model Evaluations

Voronoi Diagram

- There is still no well-formulated problem being proposed to deal with this two-dimensional conflict problem.
 - The challenges of the SRAF placement include the number, sizes, and positions of SRAFs.
 - The distances from SRAFs to the main shapes and those between SRAFs are also constrained.

7. Wire-Density Modeling

- For a better CMP process, existing approaches consider the wire density inside each global-routing tile.
 - Handling density only in a global-routing tile may incur large density variations among neighboring tiles.
 - As a result, the density variations between neighboring subregions are not controlled.

• The modeling of wire density should be reconsidered at a more global perspective.

8. Cost Metric of Wire Density

- A minimum pin-density routing is proposed to avoid globalrouting paths from passing through over-dense areas.
 - Although the routing path passes a region with fewer pins, it may exacerbate the over-dense areas in its adjacent regions.

- Most existing works try to optimize the wire density for a given window for CMP control.
 - This is not a right metric and a common pitfall for CMP control.
 - It is more desirable to minimize the variation of wire density.

9. Timing-Aware Double-Via Insertion

- The addition of redundant vias could change the timing behavior of a design positively and negatively.
 - Some path delays may increase while some others may decrease.
 - Existing works cannot guarantee that the resulting design can still satisfy timing constraints after applying their approach.
- How to tackle the timing issue more accurately during double-via insertion is still worthy for further study.

10. Multiple-Cut Via Insertion

- For high-activity, high-current, and power nets, more than one redundant via is usually desired to be inserted.
 - How to efficiently and effectively insert multiple-cut vias for those nets is also an interesting problem.
 - The single vias located on the lower layers generally have smaller dimensions and hence have higher probability of becoming invalid.
 - The lower-layer vias should have higher priority for adding redundant vias than the others.

Double-Via Insertion

Multiple-Cut Via Insertion

11. Cost Variation of Jumper Insertion in Different Layers

- Jumper insertion reroutes nets to the top-metal layer.
 - Previous works do not consider the cost difference in adding a jumper from different layers to the top-metal layer.
 - The lower jumpers consume vias that cross more metal layers and thus should be assigned larger costs than higher jumpers.

- For the formulated tree-cutting problem, the cost variation would incur two independent weights for each tree edge.
 - One is for the antenna charge, and the other is for the jumper cost.
 - The problem can be formulated as to optimize the total jumper cost such that the antenna rules are satisfied.

12. Correlation of Diode/Jumper Insertion for Antenna Effect

- There are different design costs between diode insertion and jumper insertion.
 - A previous work defines the cost function composed of the total wirelength of extension wires (for diodes) and the total number of jumpers to minimize the total delay.
 - If a more precise delay model is used to calculate the induced total delay, the cost function for the problem may be different.
- New algorithms is needed to solve this problem.

Outline

Conclusions

- With the imperfect manufacturing process, yield and reliability have become first-order cost metrics.
- Physical design plays an essential role to ensure the success of manufacturing and improve yield and reliability.
- Many existing works have shown the effectiveness of physical design for this requirement.
- There are still many opportunities for future research to further improve the manufacturability and reliability of the final designs.