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Motivation

Global nets normally have high fanout and span large areas.

Global nets are trouble makers
Use a lot of interconnect resources (30%+ total wirelength)
Major contributors to critical paths

# Global nets are considerably large (10%+ nets have 
degree > 8).

Efficient performance-driven topology design algorithms for 
these global nets are needed

Generating good topology is hard and time consuming



Tree Topology vs. Timing

Topology generation is very hard
Solution space is huge
Time consuming
Not easy to evaluate quality during generation

RSMT may not be a good choice for timing!

t3

t1

t2

t4 (critical sink)

S



Problem Formulation

Given:
A set of terminals N = {s, t1, t2, …, tn}, s – source, ti -
sinks. 
Relative required time RT = {rt1, rt2, …, rtn} which are 
sink required time reference to source s. 
Load capacitance for each sink CL = {cl1, cl2, …, cln} 
and driver resistance rd.

Objective:

Find Steiner routing tree topology optimized for WNS 
(worst negative slack) or TNS (total negative slack).



Our Approach

Step 1: Construct high-quality 
A-trees very efficiently

Step 2: Modify obtained A-tree 
structure to achieve high 
performance
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A-Tree

J. Cong et. al. [DAC93]
A rectilinear Steiner tree is called an A-tree 
if every path connecting its source and any 
node on the tree is a shortest path.

A-tree properties
Shortest path tree (SPT)
Minimizing total tree wirelength leads to 
simultaneous optimization of different 
components of sink delay
Good starting point for performance-driven 
routing trees
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A-Tree Topology Generation

Finding minimum wirelength A-tree is NP-complete. 
Want to have an efficient way to generating good 
A-tree topologies

FLUTE (Fast LookUp Table Estimation) [ICCAD 04, 
ISPD 05]

An extremely fast and accurate Steiner tree algorithm
Table lookup technique

Inspired by FLUTE, we propose a table lookup idea 
to generate A-tree topologies



A-Tree Construction

A-Tree Lookup Table Generation
Table Structure
Boundary Compaction
Configuration Graph for pruning solutions
Abstract Topology
Topology Signature

A-Tree Topology Construction



A-Tree Table Structure

Up to degree D (nets with degree>D will be broken 
down until table lookup can be performed)

Group by pin configuration and source location
FLUTE - only pin configuration matters
A-tree - both pin configuration and source location matter

# Topologies stored for each group
FLUTE - only one topology for each POWV
A-tree – all topologies potentially give the minimum 
wirelength, give more flexibility for later performance-
driven trees



Boundary Compaction

Observation 1: Most A-trees can be generated by boundary 
compaction
Observation 2: A compacting sequence (e.g. LRTLB) 
corresponds to an A-tree topology

Left Boundary 
Compaction

Left Boundary 
Expansion

One possible 
routing topology



Compacting Sequence

Compacting Sequence is a sequence of boundaries to 
perform boundary compaction.

Given a compacting sequence – based on which compacting 
the grid into one point at the source’s location, we can 
uniquely generate an A-tree topology.
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Configuration Graph

Each compacting sequence gives a unique A-Tree topology

Unfortunately the number of compacting sequences is huge and hence 
cannot be stored and evaluated

eg: For a d-pin net - # compacting sequences = 

But we need to store only topologies that result in the best wirelength

Hence, we can prune the compacting sequences

Our idea is to simultaneously prune the compacting sequences during 
generation – use the configuration graph for the same
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Pin Configuration

Pin Configuration (PC) - relative positions on the Hanan grid 
for the pins in a net

Applying boundary compaction on a PC results in a new PC

Lemma: The bounding box of a PC in the original Hanan
grid defines the PC.



Configuration Graph

Start 
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Abstract Topology

Too many topologies to be stored in the table
A lot of redundancy among the topologies
Abstract Topology – fix the positions of all the nodes (pins 
and Steiner nodes) and the connections between nodes
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Topology Signature (1)

A signature defines an Abstract Topology for a given pin configuration

We find that the Steiner positions in a tree defines the Abstract Topology

Make the redundancy checking much easier and faster

POWV:
(1,2,1,1,1;1,2,2,2,1)
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Topology Signature (2)

All 9-pin nets: 
Total # compacting sequences > 1.37 trillion
Total # Topology Signatures = 1087157, more than a MILLION
times less!

Statistics of Topology Signatures:
Degree (d) # groups (d!) Max 

# signatures/POWV
Total # signatures
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7 5040 3938

8 40320 59652

9 362880 1087157



A-tree construction and Net-breaking

Only the nets with degree < D can 
obtain their topologies directly from 
lookup table

High degree nets need to be broken 
down until the table lookup can be 
applied

When breaking the net, need to 
propagate the source so that each 
subtree has its own source for A-tree 
generation

Propagated SourceSource

Breaking 
Line



Performance-driven Post-processing

Based on obtained A-tree structure

Not stick to A-tree any more

Improve timing measurement (WNS or TNS)

Branch moving heuristic 
Effective in reducing WNS (TNS)
Very efficient



Branch Moving
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Experimental Results (1)

test 
case deg Tree Wirelength WNS (ps) TNS (ps) Runtime (s)

Our Our
Our Ctree FLUTE

A-tree Final
Ctree FLUTE

A-tree Final
Ctree FLUTE Our Ctree FLUTE

t1 9 1 1.029 0.914 -0.97 -0.80 -0.97 -0.87 -0.97 -0.80 -0.97 -0.87 1 111 0.11

t2 38 1 1.112 0.936 -5.66 -5.40 -5.71 -5.55 -5.66 -5.40 -5.71 -5.55 1 191 0.57

t3 58 1 1.176 0.809 0.00 0.00 -1.98 -21.61 0.00 0.00 -1.98 -144.3 1 704 1.15

t4 21 1 0.983 0.793 -16.32 -14.33 -15.62 -20.72 -32.34 -28.52 -31.10 -41.03 1 286 0.48

t5 9 1 1.032 0.968 -4.10 -3.81 -3.91 -4.20 -7.95 -7.31 -7.52 -8.07 1 250 0.13

t6 51 1 1.145 0.782 -1.82 0.00 -2.14 -9.76 -1.82 0.00 -2.14 -26.41 1 1255 0.89

Avg 28 1 1.095 0.915 -7.38 -6.09 -7.41 -10.55 -21.96 -18.76 -22.87 -75.27 1 371 0.487

2 sets of critical nets extracted from two industry designs
12 nets (design at 65nm technology node)
17 nets (design at projected 45nm technology node)

Run on a 750MHz Sun Sparc-2 machine
Average is over all the 29 testcases



Experimental Results (2)

test 
case deg Tree Wirelength WNS (ps) TNS (ps) Runtime (s)

Our Our
Our Ctree FLUT

E A-tree Final
Ctree FLUTE

A-tree Final
Ctree FLUTE Our Ctree FLUT

E

n_1885 27 1 1.077 0.860 -4.56 -1.51 -3.73 -6.19 -4.56 -1.51 -3.73 -6.19 1 346 0.73

n_1898 39 1 1.052 0.907 -4.91 -2.73 -4.75 -8.85 -4.91 -2.73 -4.75 -8.85 1 304 0.87

n_2045 54 1 1.181 0.897 -22.71 -22.71 -25.29 -23.28 -126.0 -126.0 -155.4 -147.3 1 455 0.75

n_2049 45 1 1.158 0.924 -2.95 -0.62 -3.55 -5.43 -2.95 -0.62 -5.27 -7.97 1 468 0.84

n_2071 29 1 1.079 0.890 -12.99 -10.66 -14.51 -14.38 -12.99 -10.66 -14.51 -14.38 1 375 0.56

n_2072 69 1 1.180 0.845 -14.72 -12.09 -22.98 -61.55 -48.39 -37.92 -96.73 -1420 1 385 0.74

Avg 28 1 1.095 0.915 -7.38 -6.09 -7.41 -10.55 -21.96 -18.76 -22.87 -75.27 1 371 0.487



Conclusion and Future Direction

New topology design algorithm
An efficient lookup-table based A-tree algorithm
A post-processing technique further improve performance
Achieve high-quality and fast runtime

Future direction
Include buffer insertion and sizing
Include wire sizing 



Thank You !

Questions?
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