A Novel Performance-Driven

!'- Topology Design Algorithm

Min Pan and Chris Chu
lowa State University

Priyadarshan Patra
Intel Corporation

Work partially supported by SRC under task ID 1206
and NSF under grant CCF-0540998

Motivation

= Global nets normally have high fanout and span large areas.

= Global nets are trouble makers
= Use a lot of interconnect resources (30%-+ total wirelength)
= Major contributors to critical paths

= # Global nets are considerably large (10%+ nets have
degree > 8).

» Efficient performance-driven topology design algorithms for
these global nets are needed

= Generating good topology is hard and time consuming

i Tree Topology vs. Timing

= [opology generation is very hard
= Solution space Is huge
= Time consuming
= Not easy to evaluate quality during generation

t3
T ta (critical sink
) ()

[

xS

11
.—

RSMT may not be a good choice for timing!

i Problem Formulation

s Glven:

= Asetof terminals N ={s, t, b, ..., [}, S— source, & -
sinks.

= Relative required time RT = {rt;, rts, ..., rtx} which are
sink required time reference to source s.

= Load capacitance for each sink CL = {c/;, ¢l ..., ch}
and driver resistance rd.

= Objective:

= Find Steiner routing tree topology optimized for WNS
(worst negative slack) or TNS (total negative slack).

i Our Approach

= Step 1: Construct high-quality
A-trees very efficiently

= Step 2: Modify obtained A-tree
structure to achieve high
performance

t1

2

ta(critical sink)

ta(critical sink)

i A-Tree

s J. Cong et. al. [DAC93]

= A rectilinear Steiner tree is called an A-tree
i3

If every path connecting its source and any e— N

node on the tree is a shortest path. e
&1
. ®
n A-tree properties
= Shortest path tree (SPT) t >
L . t
= Minimizing total tree wirelength leads to 5
simultaneous optimization of different A-Tree

components of sink delay

= Good starting point for performance-driven
routing trees

i A-Tree Topology Generation

= Finding minimum wirelength A-tree is NP-complete.
Want to have an efficient way to generating good
A-tree topologies

s FLUTE (Fast LookUp Table Estimation) [ICCAD 04,
ISPD 05]
= An extremely fast and accurate Steiner tree algorithm
= Table lookup technique

s Inspired by FLUTE, we propose a table lookup idea
to generate A-tree topologies

i A-Tree Construction

= A-Tree Lookup Table Generation
= Table Structure
= Boundary Compaction
« Configuration Graph for pruning solutions
= Abstract Topology
= Topology Signhature

s A-Tree Topology Construction

i A-Tree Table Structure

= Up to degree D (nets with degree=D will be broken
down until table lookup can be performed)

= Group by pin configuration and source location

= FLUTE - only pin configuration matters
= A-tree - both pin configuration and source location matter

s # Topologies stored for each group
= FLUTE - only one topology for each POWV

= A-tree — all topologies potentially give the minimum
wirelength, give more flexibility for later performance-

driven trees

Boundary Compaction

= Observation 1: Most A-trees can be generated by boundary
compaction

= Observation 2: A compacting sequence (e.g. LRTLB)
corresponds to an A-tree topology

Left Boundary Left Boundary
Compaction Expansion

i One possible
g TOUTING topology

Compacting Sequence

s Compacting Sequence is a sequence of boundaries to
perform boundary compaction.

= Given a compacting sequence — based on which compacting
the grid into one point at the source’s location, we can
uniquely generate an A-tree topology.

Compacting Sequence: .3 g g

L TRBBL ¢ - | ._

Configuration Graph

Each compacting sequence gives a unique A-Tree topology

Unfortunately the number of compacting sequences is huge and hence
cannot be stored and evaluated

= eg: For a d-pin net - # compacting sequences =

2(d —1)
o

But we need to store only topologies that result in the best wirelength

jx2d1x2d1><d!

Hence, we can prune the compacting sequences

Our idea is to simultaneously prune the compacting sequences during
generation — use the configuration graph for the same

i Pin Configuration

= Pin Configuration (PC) - relative positions on the Hanan grid
for the pins in a net

= Applying boundary compaction on a PC results in a new PC

= Lemma: The bounding box of a PC in the original Hanan
grid defines the PC.

....................

....................

FECLLEr TTLLEE- TIIe T

).....;......:......i

End
Nodes

...................

Abstract Topology

= 100 many topologies to be stored in the table
= A lot of redundancy among the topologies

= Abstract Topology — fix the positions of all the nodes (pins
and Steiner nodes) and the connections between nodes

Hanan grid topologies

.
.e
.e
e
.
oo
oo
""""
.
.
.e
.e
e
.e
3

. Abstract
5 topology

Topology Signature (1)

= A signature defines an Abstract Topology for a given pin configuration
= We find that the Steiner positions in a tree defines the Abstract Topology

= Make the redundancy checking much easier and faster

POWV:

Topology Signature (2)

= All 9-pin nets:
= Total # compacting sequences > 1.37 trillion

= Total # Topology Signatures = 1087157, more than a MILLION
times less!

= Statistics of Topology Signhatures:

Degree (d)| # groups (d!) Max Total # signatures
signatures/POWV
4 24 2 5
5 120 3 41
6 720 4 354
7 5040 5 3938
8 40320 6 59652
9 362880 7 1087157

A-tree construction and Net-breaking

s Only the nets with degree < D can
obtain their topologies directly from
lookup table o

Breaking |
Line | 4
= High degree nets need to be broken ° | !
down until the table lookup can be :

applied J(

|
= When breaking the net, need to [3 “;\
propagate the source so that each f |
subtree has its own source for A-tree Source | Propagated Source

generation

i Performance-driven Post-processing

= Based on obtained A-tree structure
= Not stick to A-tree any more
= Improve timing measurement (WNS or TNS)

= Branch moving heuristic
= Effective in reducing WNS (TNS)
= Very efficient

* Branch Moving

x—a0

v

5 |6

source

O—0O
Critical
sink

1 2 3 4 5 |6
X —© o*—©@
source Critical
sink
edge2

A

A

Experimental Results (1)

2 sets of critical nets extracted from two industry designs

|
= 12 nets (design at 65nm technology node)
= 17 nets (design at projected 45nm technology node)
= Run on a 750MHz Sun Sparc-2 machine
= Average is over all the 29 testcases
é:ig deg Tree Wirelength WNS (ps) TNS (ps) Runtime (s)
Our Our
Our | Ctree | FLUTE Ctree | FLUTE Ctree | FLUTE | Our | Ctree | FLUTE
A-tree Final A-tree Final
t1 9 1 1.029 | 0.914 -0.97 -0.80 -0.97 -0.87 -0.97 -0.80 -0.97 -0.87 1 111 0.11
t2 38 1 1.112 | 0.936 -5.66 -5.40 -5.71 -5.55 -5.66 -5.40 -5.71 -5.55 1 191 0.57
t3 58 1 1.176 | 0.809 0.00 0.00 -1.98 -21.61 0.00 0.00 -1.98 -144.3 1 704 1.15
t4 21 1 0.983 | 0.793 -16.32 | -14.33 | -15.62 | -20.72 | -32.34 | -28.52 | -31.10 | -41.03 1 286 0.48
t5 9 1 1.032 | 0.968 -4.10 -3.81 -3.91 -4.20 -7.95 -7.31 -7.52 -8.07 1 250 0.13
t6 51 1 1.145 | 0.782 -1.82 0.00 -2.14 -9.76 -1.82 0.00 -2.14 -26.41 1 1255 0.89
Avg 28 1 1.095 | 0.915 -7.38 -6.09 -7.41 -10.55 | -21.96 | -18.76 | -22.87 | -75.27 1 371 0.487

Experimental Results (2)

;Zzz deg Tree Wirelength WNS (ps) TNS (ps) Runtime (s)
Our | Ctree FLEUT o) Ctree | FLUTE o) Ctree | FLUTE | Our [Ctree FLEUT
A-tree Final A-tree Final
n_1885 | 27 1 1.077 | 0.860 | -4.56 -1.51 -3.73 -6.19 -4.56 -1.51 -3.73 -6.19 1 346 0.73
n_1898 | 39 1 1.052 | 0.907 | -4.91 -2.73 -4.75 -8.85 -4.91 -2.73 -4.75 -8.85 1 304 0.87
n_2045 | 54 1 1.181 | 0.897 | -22.71 | -22.71 | -25.29 | -23.28 | -126.0 | -126.0 | -1554 | -147.3 | 1 455 0.75
n_2049 | 45 1 1.158 | 0.924 | -2.95 -0.62 -3.55 -5.43 -2.95 -0.62 -5.27 -7.97 1 468 0.84
n_2071 | 29 1 1.079 | 0.890 | -12.99 | -10.66 | -14.51 | -14.38 | -12.99 | -10.66 | -14.51 | -14.38 | 1 375 0.56
n_2072 | 69 1 1.180 | 0.845 | -14.72 | -12.09 | -22.98 | -61.55 | -48.39 | -37.92 | -96.73 | -1420 1 385 0.74
Avg 28 1 1.095 | 0.915 -7.38 -6.09 -7.41 -10.55 | -21.96 | -18.76 | -22.87 | -75.27 1 371 0.487

i Conclusion and Future Direction

= New topology design algorithm
= An efficient lookup-table based A-tree algorithm
= A post-processing technique further improve performance
= Achieve high-quality and fast runtime

= Future direction
= Include buffer insertion and sizing
= Include wire sizing

!'_ Thank You !

Questions?

	Motivation
	Tree Topology vs. Timing
	Problem Formulation
	Our Approach
	A-Tree
	A-Tree Topology Generation
	A-Tree Construction
	A-Tree Table Structure
	Boundary Compaction
	Compacting Sequence
	Configuration Graph
	Pin Configuration
	Configuration Graph
	Abstract Topology
	Topology Signature (1)
	Topology Signature (2)
	A-tree construction and Net-breaking
	Performance-driven Post-processing
	Branch Moving
	Experimental Results (1)
	Experimental Results (2)
	Conclusion and Future Direction
	Thank You !�� Questions?

