
Min Pan and Chris Chu
Iowa State University

Priyadarshan Patra
Intel Corporation

A Novel Performance-Driven
Topology Design Algorithm

Work partially supported by SRC under task ID 1206

and NSF under grant CCF-0540998

Motivation

Global nets normally have high fanout and span large areas.

Global nets are trouble makers
Use a lot of interconnect resources (30%+ total wirelength)
Major contributors to critical paths

Global nets are considerably large (10%+ nets have
degree > 8).

Efficient performance-driven topology design algorithms for
these global nets are needed

Generating good topology is hard and time consuming

Tree Topology vs. Timing

Topology generation is very hard
Solution space is huge
Time consuming
Not easy to evaluate quality during generation

RSMT may not be a good choice for timing!

t3

t1

t2

t4 (critical sink)

S

Problem Formulation

Given:
A set of terminals N = {s, t1, t2, …, tn}, s – source, ti -
sinks.
Relative required time RT = {rt1, rt2, …, rtn} which are
sink required time reference to source s.
Load capacitance for each sink CL = {cl1, cl2, …, cln}
and driver resistance rd.

Objective:

Find Steiner routing tree topology optimized for WNS
(worst negative slack) or TNS (total negative slack).

Our Approach

Step 1: Construct high-quality
A-trees very efficiently

Step 2: Modify obtained A-tree
structure to achieve high
performance

t3

t5

t1

t4(critical sink)

S
t2

t3

t5

t1

t4(critical sink)

S
t2

A-Tree

J. Cong et. al. [DAC93]
A rectilinear Steiner tree is called an A-tree
if every path connecting its source and any
node on the tree is a shortest path.

A-tree properties
Shortest path tree (SPT)
Minimizing total tree wirelength leads to
simultaneous optimization of different
components of sink delay
Good starting point for performance-driven
routing trees

t3

t5

t1

t4

A-Tree

S
t2

A-Tree Topology Generation

Finding minimum wirelength A-tree is NP-complete.
Want to have an efficient way to generating good
A-tree topologies

FLUTE (Fast LookUp Table Estimation) [ICCAD 04,
ISPD 05]

An extremely fast and accurate Steiner tree algorithm
Table lookup technique

Inspired by FLUTE, we propose a table lookup idea
to generate A-tree topologies

A-Tree Construction

A-Tree Lookup Table Generation
Table Structure
Boundary Compaction
Configuration Graph for pruning solutions
Abstract Topology
Topology Signature

A-Tree Topology Construction

A-Tree Table Structure

Up to degree D (nets with degree>D will be broken
down until table lookup can be performed)

Group by pin configuration and source location
FLUTE - only pin configuration matters
A-tree - both pin configuration and source location matter

Topologies stored for each group
FLUTE - only one topology for each POWV
A-tree – all topologies potentially give the minimum
wirelength, give more flexibility for later performance-
driven trees

Boundary Compaction

Observation 1: Most A-trees can be generated by boundary
compaction
Observation 2: A compacting sequence (e.g. LRTLB)
corresponds to an A-tree topology

Left Boundary
Compaction

Left Boundary
Expansion

One possible
routing topology

Compacting Sequence

Compacting Sequence is a sequence of boundaries to
perform boundary compaction.

Given a compacting sequence – based on which compacting
the grid into one point at the source’s location, we can
uniquely generate an A-tree topology.

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

L T R

B

BL
Compacting Sequence:

LTRBBL

Configuration Graph

Each compacting sequence gives a unique A-Tree topology

Unfortunately the number of compacting sequences is huge and hence
cannot be stored and evaluated

eg: For a d-pin net - # compacting sequences =

But we need to store only topologies that result in the best wirelength

Hence, we can prune the compacting sequences

Our idea is to simultaneously prune the compacting sequences during
generation – use the configuration graph for the same

!22
)1(
)1(2 11 d

d
d dd ×××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
− −−

Pin Configuration

Pin Configuration (PC) - relative positions on the Hanan grid
for the pins in a net

Applying boundary compaction on a PC results in a new PC

Lemma: The bounding box of a PC in the original Hanan
grid defines the PC.

Configuration Graph

Start
Node

End
Nodes

Abstract Topology

Too many topologies to be stored in the table
A lot of redundancy among the topologies
Abstract Topology – fix the positions of all the nodes (pins
and Steiner nodes) and the connections between nodes

4

3
2

1

6

5

Hanan grid topologies

Abstract
topology

4

3
2

1

6

5

4

3
2

1

6

5

4

3
2

1

6

5

4

3
2

1

6

5

Topology Signature (1)

A signature defines an Abstract Topology for a given pin configuration

We find that the Steiner positions in a tree defines the Abstract Topology

Make the redundancy checking much easier and faster

POWV:
(1,2,1,1,1;1,2,2,2,1)

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

6

5

4

3

2

1

6

5

Topology Signature (2)

All 9-pin nets:
Total # compacting sequences > 1.37 trillion
Total # Topology Signatures = 1087157, more than a MILLION
times less!

Statistics of Topology Signatures:
Degree (d) # groups (d!) Max

signatures/POWV
Total # signatures

4 24 2

3

4

5

6

7

5

5 120 41

6 720 354

7 5040 3938

8 40320 59652

9 362880 1087157

A-tree construction and Net-breaking

Only the nets with degree < D can
obtain their topologies directly from
lookup table

High degree nets need to be broken
down until the table lookup can be
applied

When breaking the net, need to
propagate the source so that each
subtree has its own source for A-tree
generation

Propagated SourceSource

Breaking
Line

Performance-driven Post-processing

Based on obtained A-tree structure

Not stick to A-tree any more

Improve timing measurement (WNS or TNS)

Branch moving heuristic
Effective in reducing WNS (TNS)
Very efficient

Branch Moving

Critical
sink

source

2 3 4 51

T1

T2

T3

T4

T5

T6

edge2

6

source Critical
sink

2 3 4 51

T1

T2

T3

T4

T5

T6

6

edge1

Experimental Results (1)

test
case deg Tree Wirelength WNS (ps) TNS (ps) Runtime (s)

Our Our
Our Ctree FLUTE

A-tree Final
Ctree FLUTE

A-tree Final
Ctree FLUTE Our Ctree FLUTE

t1 9 1 1.029 0.914 -0.97 -0.80 -0.97 -0.87 -0.97 -0.80 -0.97 -0.87 1 111 0.11

t2 38 1 1.112 0.936 -5.66 -5.40 -5.71 -5.55 -5.66 -5.40 -5.71 -5.55 1 191 0.57

t3 58 1 1.176 0.809 0.00 0.00 -1.98 -21.61 0.00 0.00 -1.98 -144.3 1 704 1.15

t4 21 1 0.983 0.793 -16.32 -14.33 -15.62 -20.72 -32.34 -28.52 -31.10 -41.03 1 286 0.48

t5 9 1 1.032 0.968 -4.10 -3.81 -3.91 -4.20 -7.95 -7.31 -7.52 -8.07 1 250 0.13

t6 51 1 1.145 0.782 -1.82 0.00 -2.14 -9.76 -1.82 0.00 -2.14 -26.41 1 1255 0.89

Avg 28 1 1.095 0.915 -7.38 -6.09 -7.41 -10.55 -21.96 -18.76 -22.87 -75.27 1 371 0.487

2 sets of critical nets extracted from two industry designs
12 nets (design at 65nm technology node)
17 nets (design at projected 45nm technology node)

Run on a 750MHz Sun Sparc-2 machine
Average is over all the 29 testcases

Experimental Results (2)

test
case deg Tree Wirelength WNS (ps) TNS (ps) Runtime (s)

Our Our
Our Ctree FLUT

E A-tree Final
Ctree FLUTE

A-tree Final
Ctree FLUTE Our Ctree FLUT

E

n_1885 27 1 1.077 0.860 -4.56 -1.51 -3.73 -6.19 -4.56 -1.51 -3.73 -6.19 1 346 0.73

n_1898 39 1 1.052 0.907 -4.91 -2.73 -4.75 -8.85 -4.91 -2.73 -4.75 -8.85 1 304 0.87

n_2045 54 1 1.181 0.897 -22.71 -22.71 -25.29 -23.28 -126.0 -126.0 -155.4 -147.3 1 455 0.75

n_2049 45 1 1.158 0.924 -2.95 -0.62 -3.55 -5.43 -2.95 -0.62 -5.27 -7.97 1 468 0.84

n_2071 29 1 1.079 0.890 -12.99 -10.66 -14.51 -14.38 -12.99 -10.66 -14.51 -14.38 1 375 0.56

n_2072 69 1 1.180 0.845 -14.72 -12.09 -22.98 -61.55 -48.39 -37.92 -96.73 -1420 1 385 0.74

Avg 28 1 1.095 0.915 -7.38 -6.09 -7.41 -10.55 -21.96 -18.76 -22.87 -75.27 1 371 0.487

Conclusion and Future Direction

New topology design algorithm
An efficient lookup-table based A-tree algorithm
A post-processing technique further improve performance
Achieve high-quality and fast runtime

Future direction
Include buffer insertion and sizing
Include wire sizing

Thank You !

Questions?

	Motivation
	Tree Topology vs. Timing
	Problem Formulation
	Our Approach
	A-Tree
	A-Tree Topology Generation
	A-Tree Construction
	A-Tree Table Structure
	Boundary Compaction
	Compacting Sequence
	Configuration Graph
	Pin Configuration
	Configuration Graph
	Abstract Topology
	Topology Signature (1)
	Topology Signature (2)
	A-tree construction and Net-breaking
	Performance-driven Post-processing
	Branch Moving
	Experimental Results (1)
	Experimental Results (2)
	Conclusion and Future Direction
	Thank You !�� Questions?

