Obstacle-Avoiding Rectilinear
Steiner Minimal Tree Construction

A
3

Pel-Ci Wu, Jhih-Rong Gao and Ting-Chi Wang

Department of Computer Science
National Tsing Hua University

Outline

Introduction

Problem formulation
Algorithm
Experimental results
Conclustion

Introduction

* Routing plays an important role in
VLSI/ULSI physical design.

e Today’s design often contains rectilinear
obstacles, like macro cells, IP blocks,

and pre-routed nets.

e By taking obstacles into consideration,

obstacle-avoiding reciti

Inear Steiner

minimal tree (OARSM
becomes a very practica

) construction
problem.

Previous Work

An-OARSMan [Hu et al, ASP-DAC 2005]

Spanning graph based method [Shen et al,
ICCD 2005]

CDCTree [Shi et al, ASP-DAC 2006}

O(nlogn) algorithm: 2-OASMT [Feng et al,
ISPD 2006]

Good wirelength performance, but long
runtime

Very efficient even in large cases but get
worse wirelength

Outline

Introduction

Problem formulation
Algorithm
Experimental results
Conclustion

Problem formulation

- a set of terminals and a set of
rectangular obstacles

. a rectilinear Steiner minimum tree
which connects all terminals together
but does not intersect any obstacle

wirelength — as small as possible
running time — efficient

Outline

e |ntroduction

* Problem formulation
o Algorithm

* Experimental results
e Conclustion

Algorithm

Step 1: Partition terminals into a set of
sub-trees

Step 2: Construct the spanning graph

Step 3: Merge the sub-trees using the
ant colony optimization (ACO) based
algorithm

Step 4: Rectilinearization and
refinement

Step 1: Partitioning (1)

 In a complete graph, construct a minimal spanning
tree (MST) to connect all the terminals
dist(a, b)=Manhattan_distance(a, b)+
obstacle penalty(a, b)

obstacle penalty=length of the side of intersected
obstacle

obstacle_penalty of el =1L,

obstacle_penalty of e2 =1L,

Step 1: Partitioning (2)

« Remove edges whose L-shaped
segments (upper/lower) both
Intersect obstacles.

/ _____ ! Two sub-trees
MST edge i |

® 10

Step 2: Spanning graph

 O(nlogn) algorithm [Shen et al, ICCD 2005]

* The size Is proportional to the number of
terminals plus obstacles

« Connect every vertex (terminals/corners of
each obstacle) to the nearest vertices In Its
four directions, upper-right, upper-left, lower-
right and lower-left.

|
Ry 1 Ry | R. |
--- == - R, 1 R,
R, R __'q)'__
- - R, 'R,

[
Rl | Rs | R?

11

ldea of Ant Colony Optimization
(ACO)

Nest Food

ldea of Ant Colony Optimization

(ACO)
Nest & Food
x|
. .
> &
g &

An obstacle has block the path!
Ants would choose whether to turn
left or right with equal probability. 13

ldea of Ant Colony Optimization

(ACO)
% s
Nest & Food
x|
R R
E X4 :tt
i‘gll
L N
Ants leave In the edges just

passed. Pheromone is deposited more Yy
quickly on

ldea of Ant Colony Optimization

(ACO)
Nest Food
e e e G B

> &

"—ﬁt

All ants have chosen the shorter path.

15

Step 3: Merge the sub-trees

« Goal: merge the sub-trees to obtain an

OASMT

The wirelength of edges used to merge sub-
trees Is as small as possible

 Modified ant-colony optimization based
algorithm
Applied on the spanning graph

 Assume sub-trees are already passed by
ants

Modified ACO based algorithm

Place an ant for each sub-tree in the beginning

Ant selects the next wanted vertex by some user
defined rules
trail intensity

Like pheromone
evaporate in a constant rate

desirability

Choose a path which can connect other ants as soon as
possible

When ant A meets ant B, ant A dies
Connecting path traversed by A and path traversed by B

Only one ant left — obtain an OASMT

Multiple iterations — get the best OASMT among all

iterations .

Place ants for sub-trees

e many locations of a sub-tree

* A greedy method: determined by removed
edges of MST

End point of removed edge with smaller wirelength

Vs V

S/*\/" fﬂh
- 8 V ant3 hia

20 g
.\0/\ V,
\Z
Vv
2l ol

10

Merge sub-trees: using the ACO
based algorithm

19

Merge sub-trees: using the ACO
based algorithm

Two sub-trees
ant 1
/1 \
/7
/ \

ant 2

20

Merge sub-trees: using the ACO
based algorithm

Two sub-trees An OASMT

‘\intl\’

ant 2

21

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible

Use BFS to traverse the tree from a 1-degree
terminal

Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

22

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible

Use BFS to traverse the tree from a 1-degree
terminal

Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

23

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible

Use BFS to traverse the tree from a 1-degree
terminal

Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

24

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible

Use BFS to traverse the tree from a 1-degree
terminal

Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

25

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible
Use BFS to traverse the tree from a 1-degree
terminal
Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

26

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible
Use BFS to traverse the tree from a 1-degree
terminal
Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

27

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible
Use BFS to traverse the tree from a 1-degree
terminal
Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

28

Step 4.1: Rectilinearization

 To modify all tree edges into either horizontal
or vertical segments

. share as many segments as possible
Use BFS to traverse the tree from a 1-degree
terminal
Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

Obtain an R

\lSOIUtiOI’]
€4

€,

e 29
P

Step 4.2: Refinement

. To further improve the wirelength
of the solution obtained in step 4.1
 Eliminate ‘U’ shape connections in the
OARSMT

® l ‘U’ shape

D

30

Step 4.2: Refinement

. To further improve the wirelength
of the solution obtained in step 4.1
 Eliminate ‘U’ shape connections in the
OARSMT

® ‘U’ shape

31

Outline

Introduction

Problem formulation
Algorithm
Experimental results
Conclustion

32

Experimental Setup

o Comparison targets and platforms
An-OARSMan: 755MHz CPU and 4GB memory
2-OASMT: 755MHz CPU and 4GB memory
CDCTree: 2.66G CPU and 1G memory

Spanning graph: 1200MHz CPU and 8GB
memory

e Platform of ours: 1200MHz CPU and 8GB

e Benchmarks
Industrial cases

Randomly generated cases In
10000 x 10000 plane

33

Percentage of wirelength
Improvement

Term#

obs#

Wirelength improvement (%)

An-OARSMan | CDCTree | 2-OASMT | Spannging graph
10 32 - - - 2.80
74 625 - - - 5.26
115 1024 - - - 4.62
10 10 2.12 -1.04 10.39 7.06
30 10 0.30 -3.65 5.30 0.41
50 10 10.67 9.43 3.53 0.91
70 10 7.87 8.22 3.55 1.32
100 10 6.62 3.92 7.55 1.75
100 500 - - 43.60 2.82
200 500 - - 36.37 2.29
200 800 - - 39.54 0.64
200 1000 - - 4414 0.46
500 100 - - 12.89 1.11
1000 100 - - 4.87 1.684
1000 | 10000 - - 54.37 -
average 5.40 3.38 22.18 1.87

34

Runtime comparison

Runtime (s)

Term# | obs# :
An-OARSMan |CDCTree| 2-OASMT | Spannging graph | Ours
10 32 - - - <0.01 <(0.01
74 625 - - - 14.17 0.1
115 | 1024 - - - 60.69 0.21
10 10 0.164 0.485 0.002 <0.01 <0.01
30 10 1.075 1.034 0.003 <0.01 <0.01
50 10 3.504 8.79 0.004 0.01 <0.01
70 10 10.552 67.62 0.004 0.01 <0.01
100 10 26.974 505.1 0.004 0.02 <0.01
100 | 500 - - 0.057 12.49 0.31
200 | 500 - - 0.062 28.15 0.36
200 | 800 - - 0.005 72.66 1.53
200 | 1000 - - 0.129 112.20 1.8
500 100 - - 0.026 4.14 0.27
1000 | 100 - - 0.037 35.34 0.81
1000 | 10000 - - 2.823 - 4.2

35

Routing result with 500 terminals
and 100 obstacles

36

Outline

Introduction
Problem formulation

 Algorithm

Experimental results
Conclusion

37

Conclusion

o A fast and stable approach for obstacle-
avoiding rectilinear Steiner minimal tree
construction Is presented.

 Compared with state-of-the-art works, our
approach has the best wirelength
performance in most of the cases and the
runtime Is very small even for large cases.

* The high efficiency and good solution quality
of our approach makes it extremely practical
In the routing process.

38

—— | —— | S— | —

Thank You

	Obstacle-Avoiding Rectilinear Steiner Minimal Tree Construction �
	Outline
	Introduction
	Previous Work
	Outline
	Problem formulation
	Outline
	Algorithm
	Step 1: Partitioning (1)
	Step 1: Partitioning (2)
	Step 2: Spanning graph
	Idea of Ant Colony Optimization (ACO)
	Idea of Ant Colony Optimization (ACO)
	Idea of Ant Colony Optimization (ACO)
	Idea of Ant Colony Optimization (ACO)
	Step 3: Merge the sub-trees
	Modified ACO based algorithm
	Place ants for sub-trees
	Merge sub-trees: using the ACO based algorithm
	Merge sub-trees: using the ACO based algorithm
	Merge sub-trees: using the ACO based algorithm
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.2: Refinement
	Step 4.2: Refinement
	Outline
	Experimental Setup
	Percentage of wirelength improvement
	Runtime comparison
	Routing result with 500 terminals and 100 obstacles
	Outline
	Conclusion

