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Introduction

• Routing plays an important role in 
VLSI/ULSI physical design.

• Today’s design often contains rectilinear 
obstacles, like macro cells, IP blocks, 
and pre-routed nets. 

• By taking obstacles into consideration, 
obstacle-avoiding rectilinear Steiner 
minimal tree (OARSMT) construction 
becomes a very practical problem. 
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Previous Work
• An-OARSMan [Hu et al, ASP-DAC 2005]
• Spanning graph based method [Shen et al, 

ICCD 2005]
• CDCTree [Shi et al, ASP-DAC 2006]
• O(nlogn) algorithm: 2-OASMT [Feng et al, 

ISPD 2006]

• Good wirelength performance, but long 
runtime

• Very efficient even in large cases but get 
worse wirelength
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Problem formulation

• Given: a set of terminals and a set of 
rectangular obstacles

• Goal: a rectilinear Steiner minimum tree 
which connects all terminals together 
but does not intersect any obstacle
• wirelength → as small as possible
• running time → efficient 
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Algorithm

• Step 1: Partition terminals into a set of 
sub-trees

• Step 2: Construct the spanning graph
• Step 3: Merge the sub-trees using the 

ant colony optimization (ACO) based 
algorithm 

• Step 4: Rectilinearization and 
refinement 
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Step 1: Partitioning (1)
• In a complete graph, construct a minimal spanning 

tree (MST) to connect all the terminals 
• dist(a, b)=Manhattan_distance(a, b)+

obstacle_penalty(a, b)
• obstacle_penalty=length of the side of  intersected 

obstacle
e1

e2

obstacle_penalty of e1 = L1

obstacle_penalty of e2 = L2
L1

L2
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Step 1: Partitioning (2)

• Remove edges whose L-shaped 
segments  (upper/lower) both 
intersect obstacles. 

Two sub-trees

MST edge

e1

e2
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Step 2: Spanning graph
• O(n logn) algorithm [Shen et al, ICCD 2005]
• The size is proportional to the number of 

terminals plus obstacles
• Connect every vertex (terminals/corners of 

each obstacle) to the nearest vertices in its 
four directions, upper-right, upper-left, lower-
right and lower-left. 

R1

R2

R3 R4

R7

R6

R5

R8

R1

R2

R4

R3
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Idea of Ant Colony Optimization 
(ACO)

Nest Food
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Idea of Ant Colony Optimization 
(ACO)

Nest Food

An obstacle has block the path!
Ants would choose whether to turn 
left or right with equal probability.
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Idea of Ant Colony Optimization 
(ACO)

Nest Food

Ants leave pheromone in the edges just 
passed. Pheromone is deposited more 
quickly on the shorter path.
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Idea of Ant Colony Optimization 
(ACO)

Nest Food

All ants have chosen the shorter path. 
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Step 3: Merge the sub-trees 
• Goal: merge the sub-trees to obtain an 

OASMT
• The wirelength of edges used to merge sub-

trees is as small as possible
• Modified ant-colony optimization based 

algorithm
• Applied on the spanning graph

• Assume sub-trees are already passed by 
ants
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Modified ACO based algorithm

• Place an ant for each sub-tree in the beginning
• Ant selects the next wanted vertex by some user 

defined rules
• trail intensity 

• Like pheromone 
• evaporate in a constant rate

• desirability
• Choose a path which can connect other ants as soon as 

possible
• When ant A meets ant B, ant A dies

• Connecting path traversed by A and path traversed by B
• Only one ant left → obtain an OASMT
• Multiple iterations → get the best OASMT among all 

iterations 
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Place ants for sub-trees
• many locations of a sub-tree
• A greedy method: determined by removed 

edges of MST
• End point of removed edge with smaller wirelength

20

10
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Merge sub-trees: using the ACO 
based algorithm
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Merge sub-trees: using the ACO 
based algorithm

ant 1

ant 2

Two sub-trees
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Merge sub-trees: using the ACO 
based algorithm

ant 1

ant 2

Two sub-trees An OASMT
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Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal 

or vertical segments
• Goal: share as many segments as possible 

• Use BFS to traverse the tree from a 1-degree 
terminal

• Follow the preferred L-shaped segment to 
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2
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Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal 

or vertical segments
• Goal: share as many segments as possible 

• Use BFS to traverse the tree from a 1-degree 
terminal

• Follow the preferred L-shaped segment to 
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

Obtain an OARSMT
solution
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Step 4.2: Refinement
• Goal: To further improve the wirelength 

of the solution obtained in step 4.1
• Eliminate ‘U’ shape connections in the 

OARSMT

‘U’ shape
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Experimental Setup

• Comparison targets and platforms
• An-OARSMan: 755MHz CPU and 4GB memory
• 2-OASMT: 755MHz CPU and 4GB memory
• CDCTree: 2.66G CPU and 1G memory
• Spanning graph: 1200MHz CPU and 8GB 

memory
• Platform of ours: 1200MHz CPU and 8GB
• Benchmarks

• Industrial cases
• Randomly generated cases in 

10000 x 10000 plane
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Percentage of wirelength 
improvement
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Runtime comparison
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Routing result with 500 terminals 
and 100 obstacles
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Conclusion

• A fast and stable approach for obstacle-
avoiding rectilinear Steiner minimal tree 
construction is presented.

• Compared with state-of-the-art works, our 
approach has the best wirelength 
performance in most of the cases and the 
runtime is very small even for large cases. 

• The high efficiency and good solution quality 
of our approach makes it extremely practical 
in the routing process.
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Thank  You
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