
Obstacle-Avoiding Rectilinear
Steiner Minimal Tree Construction

Pei-Ci Wu, Jhih-Rong Gao and Ting-Chi Wang

Department of Computer Science
National Tsing Hua University

2

Outline

• Introduction
• Problem formulation
• Algorithm
• Experimental results
• Conclustion

3

Introduction

• Routing plays an important role in
VLSI/ULSI physical design.

• Today’s design often contains rectilinear
obstacles, like macro cells, IP blocks,
and pre-routed nets.

• By taking obstacles into consideration,
obstacle-avoiding rectilinear Steiner
minimal tree (OARSMT) construction
becomes a very practical problem.

4

Previous Work
• An-OARSMan [Hu et al, ASP-DAC 2005]
• Spanning graph based method [Shen et al,

ICCD 2005]
• CDCTree [Shi et al, ASP-DAC 2006]
• O(nlogn) algorithm: 2-OASMT [Feng et al,

ISPD 2006]

• Good wirelength performance, but long
runtime

• Very efficient even in large cases but get
worse wirelength

5

Outline

• Introduction
• Problem formulation
• Algorithm
• Experimental results
• Conclustion

6

Problem formulation

• Given: a set of terminals and a set of
rectangular obstacles

• Goal: a rectilinear Steiner minimum tree
which connects all terminals together
but does not intersect any obstacle
• wirelength → as small as possible
• running time → efficient

7

Outline

• Introduction
• Problem formulation
• Algorithm
• Experimental results
• Conclustion

8

Algorithm

• Step 1: Partition terminals into a set of
sub-trees

• Step 2: Construct the spanning graph
• Step 3: Merge the sub-trees using the

ant colony optimization (ACO) based
algorithm

• Step 4: Rectilinearization and
refinement

9

Step 1: Partitioning (1)
• In a complete graph, construct a minimal spanning

tree (MST) to connect all the terminals
• dist(a, b)=Manhattan_distance(a, b)+

obstacle_penalty(a, b)
• obstacle_penalty=length of the side of intersected

obstacle
e1

e2

obstacle_penalty of e1 = L1

obstacle_penalty of e2 = L2
L1

L2

10

Step 1: Partitioning (2)

• Remove edges whose L-shaped
segments (upper/lower) both
intersect obstacles.

Two sub-trees

MST edge

e1

e2

11

Step 2: Spanning graph
• O(n logn) algorithm [Shen et al, ICCD 2005]
• The size is proportional to the number of

terminals plus obstacles
• Connect every vertex (terminals/corners of

each obstacle) to the nearest vertices in its
four directions, upper-right, upper-left, lower-
right and lower-left.

R1

R2

R3 R4

R7

R6

R5

R8

R1

R2

R4

R3

12

Idea of Ant Colony Optimization
(ACO)

Nest Food

13

Idea of Ant Colony Optimization
(ACO)

Nest Food

An obstacle has block the path!
Ants would choose whether to turn
left or right with equal probability.

14

Idea of Ant Colony Optimization
(ACO)

Nest Food

Ants leave pheromone in the edges just
passed. Pheromone is deposited more
quickly on the shorter path.

15

Idea of Ant Colony Optimization
(ACO)

Nest Food

All ants have chosen the shorter path.

16

Step 3: Merge the sub-trees
• Goal: merge the sub-trees to obtain an

OASMT
• The wirelength of edges used to merge sub-

trees is as small as possible
• Modified ant-colony optimization based

algorithm
• Applied on the spanning graph

• Assume sub-trees are already passed by
ants

17

Modified ACO based algorithm

• Place an ant for each sub-tree in the beginning
• Ant selects the next wanted vertex by some user

defined rules
• trail intensity

• Like pheromone
• evaporate in a constant rate

• desirability
• Choose a path which can connect other ants as soon as

possible
• When ant A meets ant B, ant A dies

• Connecting path traversed by A and path traversed by B
• Only one ant left → obtain an OASMT
• Multiple iterations → get the best OASMT among all

iterations

18

Place ants for sub-trees
• many locations of a sub-tree
• A greedy method: determined by removed

edges of MST
• End point of removed edge with smaller wirelength

20

10

8

ant1 ant2

ant4ant3v1

v2 v3

v4

v5

v8v6
v7

19

Merge sub-trees: using the ACO
based algorithm

20

Merge sub-trees: using the ACO
based algorithm

ant 1

ant 2

Two sub-trees

21

Merge sub-trees: using the ACO
based algorithm

ant 1

ant 2

Two sub-trees An OASMT

22

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

23

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

24

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

25

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

26

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

27

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

28

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

29

Step 4.1: Rectilinearization
• To modify all tree edges into either horizontal

or vertical segments
• Goal: share as many segments as possible

• Use BFS to traverse the tree from a 1-degree
terminal

• Follow the preferred L-shaped segment to
generate rectilinearized segments greedily

p
e1

e3
e4

e5

e2

Obtain an OARSMT
solution

30

Step 4.2: Refinement
• Goal: To further improve the wirelength

of the solution obtained in step 4.1
• Eliminate ‘U’ shape connections in the

OARSMT

‘U’ shape

31

Step 4.2: Refinement
• Goal: To further improve the wirelength

of the solution obtained in step 4.1
• Eliminate ‘U’ shape connections in the

OARSMT

‘U’ shape

32

Outline

• Introduction
• Problem formulation
• Algorithm
• Experimental results
• Conclustion

33

Experimental Setup

• Comparison targets and platforms
• An-OARSMan: 755MHz CPU and 4GB memory
• 2-OASMT: 755MHz CPU and 4GB memory
• CDCTree: 2.66G CPU and 1G memory
• Spanning graph: 1200MHz CPU and 8GB

memory
• Platform of ours: 1200MHz CPU and 8GB
• Benchmarks

• Industrial cases
• Randomly generated cases in

10000 x 10000 plane

34

Percentage of wirelength
improvement

35

Runtime comparison

36

Routing result with 500 terminals
and 100 obstacles

37

Outline

• Introduction
• Problem formulation
• Algorithm
• Experimental results
• Conclusion

38

Conclusion

• A fast and stable approach for obstacle-
avoiding rectilinear Steiner minimal tree
construction is presented.

• Compared with state-of-the-art works, our
approach has the best wirelength
performance in most of the cases and the
runtime is very small even for large cases.

• The high efficiency and good solution quality
of our approach makes it extremely practical
in the routing process.

39

Thank You

	Obstacle-Avoiding Rectilinear Steiner Minimal Tree Construction �
	Outline
	Introduction
	Previous Work
	Outline
	Problem formulation
	Outline
	Algorithm
	Step 1: Partitioning (1)
	Step 1: Partitioning (2)
	Step 2: Spanning graph
	Idea of Ant Colony Optimization (ACO)
	Idea of Ant Colony Optimization (ACO)
	Idea of Ant Colony Optimization (ACO)
	Idea of Ant Colony Optimization (ACO)
	Step 3: Merge the sub-trees
	Modified ACO based algorithm
	Place ants for sub-trees
	Merge sub-trees: using the ACO based algorithm
	Merge sub-trees: using the ACO based algorithm
	Merge sub-trees: using the ACO based algorithm
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.1: Rectilinearization
	Step 4.2: Refinement
	Step 4.2: Refinement
	Outline
	Experimental Setup
	Percentage of wirelength improvement
	Runtime comparison
	Routing result with 500 terminals and 100 obstacles
	Outline
	Conclusion

