Protocol Transducer Synthesis using Divide and Conquer approach

[†]Shota Watanabe [‡]Kenshu Seto [†]Yuji Ishikawa [‡]Satoshi Komatsu [‡]Masahiro Fujita

† Dept. of Electronics Engineering, Univ. of Tokyo‡ VLSI Design and Education Center, Univ. of Tokyo

2007/01/24 ASPDAC2007

Outline

- Background
- Protocol Transducer Synthesis
- Baseline Method(Passerone's Method)
- Proposed Method
- Experiment

Outline

- Protocol Transducer Synthesis
- Baseline Method(Passerone's Method)
- Proposed Method
- Experiment

Background

- Transistors continue to be shrunk
- More number of transistors on a single LSI
- These result in long design period
- However, it is important to shorten the time-to-market

Background

IP reuse is an attractive solution

- Reuse existing designs (IPs) for the new design.
 - It can also shorten verification period, because IPs are pre-verified.

However, the interface mismatch prevents an IP from being reused...

Background

In such case, designers usually insert a protocol transducer between incompatible interfaces.

- However, designing a protocol transducer consumes much time...
- Automatic synthesis of protocol transducer is expected to be useful.

Outline

- **Background**
- Protocol Transducer Synthesis
- Baseline Method(Passerone's Method)
 - **Proposed Method**
 - Experiment
 - Conclusion

Passerone's Method

Passerone et'al proposed a protocol transducer synthesis method in [5].

[5] R.Passerone, J.A.Rowson, A.Sangiovanni-Vincentelli,

"Automatic Transducer Synthesis of Interfaces between Incompatible Protocols" , DAC'98 pp.8-13

Passerone's Method –Search algorithm-

Take a state from each automaton, and see if they are inconsistent or not.

- If not, search the next transitions.
- If more under sa the leas
 Output a value which is not arrived

ions are available hoose one having

The State-of-the-art Protocols

(a) Conventional Protocol

The Limitations of the existing methods

- Most of the existing methods uses a SINGLE automaton as a specification of a protocol.
- These features with parallelisms are difficult to be described in an automaton.

Outline

- Background
- Protocol Transducer Synthesis
- Baseline Method (Passerone's Method)
- Proposed Method
 - Experiment

Objective

- Automatically synthesize protocol transducers even for complex protocol, by extending Passerone's Method.
- Basic Idea: Divide-and-Conquer
 - Partition the exploration space into some small ones.
 - Construct the entire transducer from the partial transducers.

1. Protocol Modeling Method

- 2. Sequence Level Synthesis
- 3. Automaton Level Synthesis
- 4. Construction of whole Transducer

- 1. Protocol Modeling Method
- 2. Sequence Level Synthesis
- 3. Automaton Level Synthesis
- 4. Construction of whole Transducer

- 1. Protocol Modeling Method
- 2. Sequence Level Synthesis
- 3. Automaton Level Synthesis
- 4. Construction of whole Transducer

1. Protocol Modeling Method

Sequence Level Synthesis

- 1. Protocol Modeling Method
- 2. Sequence Level Synthesis
- 3. Automaton Level Synthesis
- 4. Construction of whole Transducer

1. Protocol Modeling Method

1.Protocol Modeling Method 2.Sequence Level Synthesis 3.Automaton Level Synthesis 4.Construction of whole Transducer

Proposed Protocol Model...

We regard a protocol as a set of Sequences
 A Sequence corresponds as an operation such as "Single Read", "4-Burst Write", etc.
 A Sequence consists of a set of automata.

1. Protocol Modeling Method

The number of automata in a Sequence depends on its protocol type.

1. Protocol Modeling Method

- The number of automata in a Sequence depends on its protocol type.
- Protocol Types:
 Blocking Protocol

Sequence = an automaton

Non-Blocking Protocol

Sequence = two automata

(Request / Response)

Out-of-Order Protocol

Sequence = two automata

(Request / Response)

2.Sequence Level Synthesis

1.Protocol Modeling Method
 2.Sequence Level Synthesis
 3.Automaton Level Synthesis
 4.Construction of whole Transducer

- Synthesize a partial transducer from a pair of sequences.
- Each sequence has one or two automaton, according to its belonging protocol's type.

Belonging to a Blocking Protocol

Belonging to a Non-Blocking or Out-of-Order Protocol

In case both sequences are Blocking.

In case both sequences are Non-Blocking or Out-of-Order.

In case one is Blocking, the other is Non-Blocking or Out-of-Order

3. Automaton Level Synthesis (Extended Passerone's method)

1.Protocol Modeling Method
 2.Sequence Level Synthesis
 3.Automaton Level Synthesis
 4.Construction of whole Transducer

3. Automaton level Transducer Synthesis

- Automaton Level Synthesis is done by extended Passerone's Method.
- Because Passerone's method explores in depth-first-search, it cannot deal with loops in the automata.
- □ The extensions are following:
 - Handling of Loops
 - Multiple Data Sequences

Handling of Loops in automata

- Every automaton in the sequences has paths which returns to the initial state.
- So, all automata have loops in themselves.
- This prevents from being applied Passerone's method.

Multiple Data Sequences

However, the insertion of "end state" cannot deal Webdeal with a sequence by Marcall ansequence this kind of automata "Multiple Data Sequence".

Multiple Data Sequences

Input : Partial Transducers Output: Entire transducer

1.Protocol Modeling Method
2.Sequence Level Synthesis
3.Automaton Level Synthesis
4.Construction of whole Transducer

We have to construct whole transducer from partial transducers.

A Partial Transducer consists of

Partial T	
0-	

An FSM : in case input protocols are (B,B),(NB,B),(B,NB), (OO,B),(B,OO)

A request FSM and a response FSM : In case (NB,NB),(OO,OO),(NB,OO),(OO,NB)

In case at least one is BK protocol

By regarding every initial state as the same one.

Otherwise (NB,NB),(00,00),(NB,00),(00,NB)

□ In case (NB,NB) or (OO,NB)

In case (00,00)

In case (NB,OO)

Outline

- Background
- Protocol Transducer Synthesis
- Baseline Method(Passerone's Method)
- Proposed Method

Conclusion

Experiment1: Non-Blocking Non-Blocking

Test Bench

/TESTBENCH_REQ/RST -⁻Single Read Request (000) 001 011 (000 /TESTBENCH_REQ/M_MCmd 0000 bbbb (0000) /TESTBENCH_REQ/M_MAddr aaaa 0000 (0000) /TESTBENCH_REQ/M_MData -CCCC /TESTBENCH_REQ/M_SCmdAccept (000) (001 (010 1000 /TESTBENCH_REQ/S_MCmd -/TESTBENCH_REQ/S_MAddr (0000) laaaa bbbb /TESTBENCH_REQ/S_MData (0000) CCCC /TESTBENCH_REQ/S_SCmdAccept

Single Read Request

/TESTBENCH_REQ/M_SResp	00		(01	χοο
/TESTBENCH_REQ/M_SData	0000) ffff	(0000
-				
/TESTBENCH_REQ/S_SResp	00		(01)	(00
/TESTBENCH_REQ/S_SData	⁰⁰⁰⁰ FIF	O Push)(ffff)	(0000
-				
/TESTBENCH_REQ/FIFO_WD	{00	(01_) <mark>00_(10_(00)</mark>		
/TESTBENCH_REQ/FIFO_RD		{01	(1	0
/TESTBENCH_REQ/FIFO_WEN				
/TESTBENCH_REQ/FIFO_REN				
/TESTBENCH_REQ/FIFO_EF				
/TESTBENCH_REQ/FIFO_FF				

/TESTBENCH REQ/CLK

/TESTBENCH REQ/RST -

Non-Posted Write Request

/TESTBENCH_REQ/RST

/TESTBENCH_REQ/M_MCmd	(001	(011)(000
/TESTBENCH_REQ/M_MAddr) aaaa	(bbbb)0000
/TESTBENCH_REQ/M_MData		(cccc)(0000
/TESTBENCH_REQ/M_SCmdAccept			

/TESTBENCH_REQ/S_MCmd)001	(010)000
/TESTBENCH_REQ/S_MAddr	aaaa	(bbbb	
/TESTBENCH_REQ/S_MData		CCCC	
/TESTBENCH_REQ/S_SCmdAccept			

Single Read Response

/TESTBENCH_REQ/RST

/TESTBENCH REQ/M MCmd	(001	(011	(000
/TESTBENCH REQ/M MAddr	∖aaaa	(bbbb	(0000
/TESTBENCH_REQ/M_MData		(cccc	(0000
/TESTBENCH REQ/M SCmdAccept			

/TESTBENCH_REQ/S_MCmd	(000	(001	(010	(000
/TESTBENCH_REQ/S_MAddr		Jaaaa	bbbb	
/TESTBENCH_REQ/S_MData	0000		cccc	
/TESTBENCH_REQ/S_SCmdAccept				

Non-Posted Write Response

Conclusion

- We proposed a protocol transducer synthesis method using divide and conquer approach.
- Our method can be applied to the state-of-the-art protocols such as OCP, AMBA AXI, etc.

We implemented our method on an original tool.

Demo will be available at EDS Fair

Protocol Transducer Synthesis using Divide and Conquer approach

Thank you for your attention.

Any Question?

2007/01/24