
2007/1/30 ASP-DAC 2007 1

A Processor Generation Method
from Instruction Behavior Description
Based on Specification of Pipeline Stages
and Functional Units

Takeshi Shiro, Masaaki Abe,
Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu Imai

Graduate School of Information Science and Technology,
Osaka University, Japan

2007/1/30 ASP-DAC 2007 2

Outline

Background
Proposed Processor Generation
Method
Experiments
Conclusion

2007/1/30 ASP-DAC 2007 3

Background
Application-Specific Instruction set Processors
(ASIPs)

More flexible than ASICs
Higher performance than general purpose processors

Design Space Exploration (DSE)
Explore and evaluate various architectures
Requirements

Design and modify various processors
within a limited time
Compilers, assemblers, and simulators are demanded

Processor Design Environment
is proposed

2007/1/30 ASP-DAC 2007 4

Design Flow
of Processor Design Environment

1.Architecture parameter
Definition

2. Instruction Set
Definition

3. Semantics
Definition

4. Operation
Definition

SW Development Tools HDL of
a Processor

Satisfy?

Optimal Processor

Satisfy
Not Satisfy

2007/1/30 ASP-DAC 2007 5

Semantics Definition and
Operation Definition
Semantics Definition

For software
development tools
Defined by behavior
description

Not specify pipeline
stages and functional
units

Operation Definition
For HDL description
Defined by micro-
operation description

Specify pipeline stages
and functional units

GPR[rd] = GPR[rs0] + GPR[rs1];

Stage1: current_pc = PC.read();
inst = IMEM.read(current_pc);
IR.write(inst);
PC.inc();

Stage2: source0 = GPR.read0(rs0);
source1 = GPR.read1(rs1);

Stage3: result
= ALU.add(source0,source1);

Stage4:
Stage5: GPR.write0(rd,result);

Behavior Description of Instruction ADD

Micro-Operation Description of Instruction ADD

2007/1/30 ASP-DAC 2007 6

Problems and Solutions
Problems

Describing micro-operation description takes up half of
processor design time

Code size of micro-operation description is more than that of
behavior description

Consistency between two descriptions is required
Human error may be occur

→Instructions should be defined by only one description

Generate micro-operation description
from behavior description

2007/1/30 ASP-DAC 2007 7

Outline

Background
Proposed Processor Generation
Method
Experiments
Conclusion

2007/1/30 ASP-DAC 2007 8

Generation Flow of the
Proposed Method

1. Construct Abstract Syntax Trees (ASTs)
from the behavior description

2. Generate micro-operation fragments
Micro-operation descriptions without
specification of pipeline stages and functional
units

3. Allocate the micro-operation fragments to
the pipeline stages.

4. Define a functional unit
for each micro-operation fragment

2007/1/30 ASP-DAC 2007 9

Assumption
The behavior description must be
complemented with the following information

Allocating micro-operation fragments to pipeline
stages
Binding functional units to micro-operation
fragments

Give attribute to each pipeline stage
execution, memory read, etc.

Define only one functional unit for a
certain function

2007/1/30 ASP-DAC 2007 10

Construction of
Abstract Syntax Trees (ASTs)

Parse behavior description, and construct AST

GPR[rd]
= GPR[rs0] + GPR[rs1]

Instruction ADD
Assign

+

GPR rd

Array

GPR rs0

Array

GPR rs1

Array

2007/1/30 ASP-DAC 2007 11

Generation of
Micro-Operation fragments

Micro-operation fragments
Micro-operation description without specification of pipeline
stages and functional units
result = $temp.add(source0,source1);

Generate micro-operation fragments by scanning
generated ASTs
Generate micro-operation fragments of operator
nodes

Functional units are not decided yet
Only functions are decided

add, addu, mul, etc…

2007/1/30 ASP-DAC 2007 12

Example of Generating
Micro-Operation fragments

source2 =
$temp.add(source0, source1);

source1 = GPR.read1(rs1);

source0 = GPR.read0(rs0);

GPR.write0(rd,source2);

Instruction ADD
GPR[rd] = GPR[rs0] + GPR[rs1];

+

GPR rd

=

Array

GPR rs0

Array

GPR rs1

Array

2007/1/30 ASP-DAC 2007 13

Allocation to Pipeline Stages

Allocate each micro-operation
fragment to pipeline stage
Attribute of each stage

Given in architecture definition step by a
designer

2007/1/30 ASP-DAC 2007 14

Attribute of Pipeline Stages
Attribute

Instruction fetch, execution, memory read, etc…

Attribute of Pipeline Stages
Stage Name Attribute
Stage1 Instruction Fetch
Stage2 Operand Fetch & Sign-Extension
Stage3 Execution & Jump
Stage4 Memory Read & Memory Write
Stage5 Write Back

2007/1/30 ASP-DAC 2007 15

Example of
Allocating to Pipeline Stages

Stage1

Stage2 source0 = GPR.read0(rs0);
source1 = GPR.read1(rs1);

Stage3 source2 =
$temp.add(source0,source1);

Stage4

stage5 GPR.write0(rd,source2);

source2 =
$temp.add(source0, source1);

source1 = GPR.read1(rs1);

source0 = GPR.read0(rs0);

GPR.write0(rd,source2);

Instruction ADD

•Attribute of each pipeline stage
•Operand Fetch (read0, read1, ..)→ stage2
•Execution (add, sub, …) → stage3
•Memory Access (load, store, …)→ stage4
•Write Back (write0, …) → stage5

2007/1/30 ASP-DAC 2007 16

Bind Functional Units

Bind Functional Units to
Allocated Micro-operation fragments

1. List all functions in generated micro-
operation fragments

2. Decide a functional unit for each function
3. Bind decided functional unit to each

micro-operation fragment

2007/1/30 ASP-DAC 2007 17

Example of
Binding Functional Units

instruction operator function
ADD
SUB
MUL
LSFT

add
sub
mul
lsft

+
-
*

<<

functional unit
ALU
ALU
MUL
SFT

source2 = $temp.add(source0,source1);

source2 = ALU.add(source0,source1);

$temp ← ALU

2007/1/30 ASP-DAC 2007 18

Outline

Background
Proposed Processor Generation
Method
Experiments
Conclusion

2007/1/30 ASP-DAC 2007 19

Experiments
Experimental setup

Design MIPS R3000 and DLX, and compare design time and
design quality between conventional method and proposed
method

Confirm the reduction of design time
without degradation of design quality

Modify DLX by changing the pipeline architecture and
implementing extra specific instructions, and compare design
time and design quality

Confirm fast modification

Conventional method
A designer manually describe micro-operation description

Environment
Use ASIP Meister* as a processor design environment

* M. Imai, ‘’ASIP Meister : A Configurable Processor Core Development System,''
Proc. of ICICT 2005, Cairo, Egypt, Dec. 2005.

2007/1/30 ASP-DAC 2007 20

Implemented Processors
MIPS R3000 subset

5 pipeline stages
42 instructions

13 ALU operation ,4 mult/div, 11 immediate operation, 8 memory
access , and 6 jump/branch

DLX subset with 3 pipeline stages
3 pipeline stages
51 instructions

16 ALU operation, 4 mult/div, 17 immediate operation, 8 memory
access , and 6 jump/branch

Modified DLX subset
5 pipeline stages
8 extra instructions

2 multiply and accumulate (MAC), 4 memory access with post-
increment/decrement, ABS(calculation of absolute), and CEX(compare
and exchange)

2007/1/30 ASP-DAC 2007 21

MIPS R3000 subset

55 55

45 45

100

30

20

0

50

100

150

200

250

300

350

conventional proposed

de
si

gn
 t

im
e
 (

m
in

u
te

s)

Architecture Def. Semantics Def.

Operation Def. Others

DLX subset

75 75

60 60

125

40

20

0

50

100

150

200

250

300

350

conventional proposed

de
si

gn
 t

im
e
 (

m
in

u
te

s)

Architecture Def. Semantics Def.

Operation Def. Others

Comparison of Design Time

230

120

300

155

Reduced
by 48%

Reduced
by 48%

2007/1/30 ASP-DAC 2007 22

Comparison of Design Quality
Area

36.8 36
39.1

36.1

0

5

10

15

20

25

30

35

40

45

MIPS R3000 DLX

K
ga

te
s

Conventional Proposed

Delay

8.85
9.72

8.97
9.83

0

2

4

6

8

10

12

14

MIPS R3000 DLX

n
s

Conventional Proposed

library: 0.18μm CMOS

2007/1/30 ASP-DAC 2007 23

Design Time

50

20

0

10

20

30

40

50

60

conventional proposed

m
in

u
te

s

conventional
proposed

Area

52.2 52.8

0

10

20

30

40

50

60

conventional proposed

K
ga

te
s

conventional
proposed

Delay Time

8.41 8.52

0

1

2

3

4

5

6

7

8

9

conventional proposed

n
s

conventional
proposed

Modification of DLX processor

2007/1/30 ASP-DAC 2007 24

Outline

Background
Proposed Processor Generation
Method
Experiments
Conclusion

2007/1/30 ASP-DAC 2007 25

Conclusion
A method of generating micro-operation description
from behavior description

Generate micro-operation fragments from abstract syntax
trees
Automatically allocate fragments, base on attribute of each
stage

Quick design becomes possible
Reduce code by about 65 %
Reduce design time by about 50%
Hardly degrade

Future Work
Optimizing combination of functional units
Generate micro-operation description of interrupts

	A Processor Generation Method�from Instruction Behavior Description�Based on Specification of Pipeline Stages and Functional U
	Outline
	Background
	Design Flow�of Processor Design Environment
	Semantics Definition and �Operation Definition
	Problems and Solutions
	Outline
	Generation Flow of the Proposed Method
	Assumption
	Construction of �Abstract Syntax Trees (ASTs)
	Generation of �Micro-Operation fragments
	Example of Generating�Micro-Operation fragments
	Allocation to Pipeline Stages
	Attribute of Pipeline Stages
	Example of �Allocating to Pipeline Stages
	Bind Functional Units
	Example of �Binding Functional Units
	Outline
	Experiments
	Implemented Processors
	Comparison of Design Time
	Comparison of Design Quality
	Modification of DLX processor
	Outline
	Conclusion

