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Background
Application-Specific Instruction set Processors 
(ASIPs)

More flexible than ASICs
Higher performance than general purpose processors

Design Space Exploration (DSE)
Explore and evaluate various architectures 
Requirements

Design and modify various processors 
within a limited time
Compilers, assemblers, and simulators are demanded 

Processor Design Environment
is proposed
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Design Flow
of Processor Design Environment

1.Architecture parameter
Definition

2. Instruction Set
Definition

3. Semantics
Definition

4. Operation
Definition

SW Development Tools HDL of 
a Processor

Satisfy?

Optimal Processor

Satisfy
Not Satisfy
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Semantics Definition and 
Operation Definition
Semantics Definition

For software 
development tools 
Defined by behavior 
description

Not specify pipeline 
stages and functional 
units

Operation Definition
For HDL description
Defined by micro-
operation description

Specify pipeline stages 
and functional units

GPR[rd] = GPR[rs0] + GPR[rs1];

Stage1: current_pc = PC.read();
inst = IMEM.read(current_pc);
IR.write(inst);
PC.inc();

Stage2: source0 = GPR.read0(rs0);
source1 = GPR.read1(rs1);

Stage3: result 
= ALU.add(source0,source1);

Stage4:
Stage5: GPR.write0(rd,result);

Behavior Description of Instruction ADD

Micro-Operation Description of Instruction ADD
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Problems and Solutions
Problems

Describing micro-operation description takes up half of 
processor design time

Code size of micro-operation description is more than that of 
behavior description

Consistency between two descriptions is required
Human error may be occur

→Instructions should be defined by only one description

Generate micro-operation description
from behavior description
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Generation Flow of the 
Proposed Method

1. Construct Abstract Syntax Trees (ASTs) 
from the behavior description

2. Generate micro-operation fragments
Micro-operation descriptions without 
specification of pipeline stages and functional 
units

3. Allocate the micro-operation fragments to 
the pipeline stages.

4. Define a functional unit
for each micro-operation fragment
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Assumption
The behavior description must be 
complemented with the following information

Allocating micro-operation fragments to pipeline 
stages
Binding functional units to micro-operation 
fragments

Give attribute to each pipeline stage
execution, memory read, etc.

Define only one functional unit for a 
certain function
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Construction of 
Abstract Syntax Trees (ASTs)

Parse behavior description, and construct AST

GPR[rd] 
= GPR[rs0] + GPR[rs1]

Instruction ADD
Assign

+

GPR rd

Array

GPR rs0

Array

GPR rs1

Array
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Generation of 
Micro-Operation fragments

Micro-operation fragments
Micro-operation description without specification of pipeline 
stages and functional units
result = $temp.add(source0,source1);

Generate micro-operation fragments by scanning 
generated ASTs
Generate micro-operation fragments of operator 
nodes

Functional units are not decided yet
Only functions are decided

add, addu, mul, etc…
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Example of Generating
Micro-Operation fragments

source2 = 
$temp.add(source0, source1);

source1 = GPR.read1(rs1);

source0 = GPR.read0(rs0);

GPR.write0(rd,source2);

Instruction ADD
GPR[rd] = GPR[rs0] + GPR[rs1];

+

GPR rd

=

Array

GPR rs0

Array

GPR rs1

Array
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Allocation to Pipeline Stages

Allocate each micro-operation 
fragment to pipeline stage 
Attribute of each stage

Given in architecture definition step by a 
designer
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Attribute of Pipeline Stages
Attribute

Instruction fetch, execution, memory read, etc…

Attribute of Pipeline Stages
Stage Name Attribute
Stage1 Instruction Fetch
Stage2 Operand Fetch & Sign-Extension
Stage3 Execution & Jump
Stage4 Memory Read & Memory Write
Stage5 Write Back
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Example of 
Allocating to Pipeline Stages

Stage1

Stage2 source0 = GPR.read0(rs0);
source1 = GPR.read1(rs1);

Stage3 source2 = 
$temp.add(source0,source1);

Stage4

stage5 GPR.write0(rd,source2);

source2 = 
$temp.add(source0, source1);

source1 = GPR.read1(rs1);

source0 = GPR.read0(rs0);

GPR.write0(rd,source2);

Instruction ADD

•Attribute of each pipeline stage
•Operand Fetch (read0, read1, ..)→ stage2 
•Execution (add, sub, …) → stage3
•Memory Access (load, store, …)→ stage4
•Write Back (write0, …) → stage5
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Bind Functional Units 

Bind Functional Units to 
Allocated Micro-operation fragments

1. List all functions in generated micro-
operation fragments

2. Decide a functional unit for each function
3. Bind decided functional unit to each 

micro-operation fragment
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Example of 
Binding Functional Units 

instruction operator function
ADD
SUB
MUL
LSFT

add
sub
mul
lsft

+
-
*

<<

functional unit
ALU
ALU
MUL
SFT

source2 = $temp.add(source0,source1);

source2 = ALU.add(source0,source1);

$temp  ← ALU
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Experiments
Experimental setup

Design MIPS R3000 and DLX, and compare design time and 
design quality between conventional method and proposed 
method

Confirm the reduction of design time
without degradation of design quality

Modify DLX by changing the pipeline architecture and 
implementing extra specific instructions, and compare design 
time and design quality

Confirm fast modification

Conventional method
A designer manually describe micro-operation description

Environment
Use ASIP Meister* as a processor design environment

* M. Imai, ‘’ASIP Meister : A Configurable Processor Core Development System,''
Proc. of ICICT 2005, Cairo, Egypt, Dec. 2005.
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Implemented Processors
MIPS R3000 subset

5 pipeline stages
42 instructions

13 ALU operation ,4 mult/div, 11 immediate operation, 8 memory 
access , and 6 jump/branch

DLX subset with 3 pipeline stages
3 pipeline stages
51 instructions

16 ALU operation, 4 mult/div, 17 immediate operation, 8 memory 
access , and 6 jump/branch

Modified DLX subset
5 pipeline stages
8 extra instructions

2 multiply and accumulate (MAC), 4 memory access with post-
increment/decrement, ABS(calculation of absolute), and CEX(compare
and exchange)
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MIPS R3000 subset
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Comparison of Design Quality
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36.8 36
39.1

36.1

0

5

10

15

20

25

30

35

40

45

MIPS R3000 DLX

K
ga

te
s

Conventional Proposed

Delay

8.85
9.72

8.97
9.83

0

2

4

6

8

10

12

14

MIPS R3000 DLX

n
s

Conventional Proposed

library: 0.18μm CMOS



2007/1/30 ASP-DAC 2007 23

Design Time
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Conclusion
A method of generating micro-operation description 
from behavior description

Generate micro-operation fragments from abstract syntax 
trees
Automatically allocate fragments, base on attribute of each 
stage

Quick design becomes possible
Reduce code by about 65 %
Reduce design time by about 50%
Hardly degrade

Future Work
Optimizing combination of functional units
Generate micro-operation description of interrupts
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