
Deeper Bound in BMC by Combining
Constant Propagation and Abstraction

Tamir Heyman
R. Armoni, R. Fraer, L. Fix, M. Vardi, Y.

Visel and Y. Zbar
ASP-DAC 2007

Hardware verification

There is a growing use of model checking in
hardware verification
SAT-based Bounded Model Checking (BMC)
can handle thousands of state elements
BMC can find errors up to a small search
bound (~100) which limits confidence in
correctness

Deeper Bound in BMC is Required

Communication devices includes long
transactions
Large circuits have larger diameter
Occasionally, BMC can not reach even a
small bound for small circuits

Our Contributions

Improve BMC using assumptions substitution
Improve BMC using abstraction refinement
Combine assumptions substitution and
abstraction refinement to reach deeper
bounds

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

Bounded Model Checking (BMC)

Bounded Model Checking takes a model M,
a specification p and a bound k
The safety property p is valid up to step k

iff φ = Ω(k) is unsatisfiable:

Assumptions Substitution

It is common that a hardware specification
includes assumptions on the inputs

For example, “The input clk toggles every cycle”

We use these assumptions to reduce φ
Smaller φ implies smaller SAT instance
We substitute the value of the input into φ
according to the assumption

Example

Variables x,y
x’=(!clk/¥clk’)? !y’ : x
y’=(clk/¥!clk’)? x’ : y
An input clock clk
The property to check: p(x,y)=(x=y)
Assumption: Clock initialized to 0 and
toggles every cycle

After unfolding

x0 , y0 - free
x1 =!clk 0/¥clk1? !y1 : x0

y1=!clk0/¥clk1? x1 : y0

x2=!clk1/¥clk2? !y2 : x1

y2=!clk1/¥clk2? x2 : y1

The assumption on the clock
clk0=0,clk1=1,clk2=0

After injecting the clock values

x0, y0 - free
x1=!0/¥ 1 ? !y1 : x0

y1= 0/¥!1 ? x1 : y0

x2=!1/¥ 0 ? !y2 : x1

y2= 1/¥!0 ? x2 : y1

After Constant Propagation clk

x0, y0 - free
x1= !y1

y1= y0

x2= x1

y2= x2

Improved BMC with
Abstraction Refinement

We construct from the hardware circuit a
sequence of abstract models
The model is a conservative abstraction

The hardware satisfies the property up to bound
k if the abstract model satisfies P up to k
Usually, the abstract model is smaller than the
hardware

ABMC algorithm
function ABMC(M,P, t, δ)
1. initialize k
2. While k < t
3. V = concrete model variables
4. ϕ = Build-BMC-formula (V, k)
5. if SAT-solver(ϕ)= SAT return CEX
6. V ′ = variables in unSAT core

7. if |V ′|
|V | ≤ δ

8. ϕ = Build-BMC-formula(V ′, t)
9. if SAT-solver(ϕ) = unsat

10. return Valid up to t
11. k = k + 1
12. return Valid up to t

ABMC algorithm
function ABMC(M,P, t, δ)
1. initialize k
2. While k < t
3. V = concrete model variables
4. ϕ = Build-BMC-formula (V, k)
5. if SAT-solver(ϕ)= SAT return CEX
6. V ′ = variables in unSAT core

7. if |V ′|
|V | ≤ δ

8. ϕ = Build-BMC-formula(V ′, t)
9. if SAT-solver(ϕ) = unsat

10. return Valid up to t
11. k = k + 1
12. return Valid up to t

ABMC-CCP: BMC with
Abstraction and Assumptions

The abstract model needs to satisfy p up to
bound k
An input that gets values by an assumption
may be required for the abstract model
We use a new conservative constant
propagation (CCP)

Reduces parts that are don’t care
The SAT solver complement CCP

CCP: Conservative CP

We evaluate each node e1 in φ
considering all the assumptions
We create new expression φ’ by
replacing the expression e=e1 /¥ e2
with e=e1, if e1 evaluated to false
The expression e2 is not included in φ’

ABMC-CCP is Sound

The expression φ’ translated to CNF and is sent
to the SAT solver
If the solver returns unsat, identify all the parts
of the circuit that relate to the unsat proof
These parts forms the abstract model
It is a conservative abstract model

The circuit satisfies the property if the abstract model
does

ABMC-CCP is complete

If a circuit satisfies a property p up to bound k,
then the appropriate φ is unsat
If φ is unsat φ’ is unsat

Any satisfying assignment to φ satisfies φ’

The abstract model build from the unsat proof
for φ’ does not have any counterexample of
lengh k

We includes all the parts for repeat the unsat proof

Circuit #var ABMC ABMC-CCP Ratio
bound time bound time

P8 27,201 20 Mout 48 Mout 240%
P15 5,946 281 Tout 512 Tout 182%
P19 6,907 153 Tout 296 Tout 193%
P24 5,954 271 Tout 312 Tout 115%
P38 6,028 187 Tout 300 Tout 160%
P54 6,028 245 Tout 296 Tout 121%
P69 5,938 199 Tout 276 Tout 139%
P45 6,219 369 Tout 1,000 7,869 271%
P37 7,180 355 Tout 694 Tout 195%
Pf 1,585 715 Tout 686 Tout 96%
Pbb 1,458 30 Tout 61 Tout 203%
Pc 1,648 71 Mout 498 Tout 701%
Ave 218%

The End

Thanks you for listening

	Deeper Bound in BMC by Combining Constant Propagation and Abstraction
	Hardware verification
	Deeper Bound in BMC is Required
	Our Contributions
	Bounded Model Checking (BMC)
	Assumptions Substitution
	Example
	After unfolding
	After injecting the clock values
	After Constant Propagation clk
	Improved BMC with Abstraction Refinement
	ABMC algorithm
	ABMC algorithm
	ABMC-CCP: BMC with Abstraction and Assumptions
	CCP: Conservative CP
	ABMC-CCP is Sound
	ABMC-CCP is complete
	The End

