Deeper Bound in BMC by Combining Constant Propagation and Abstraction

Tamir Heyman R. Armoni, R. Fraer, L. Fix, M. Vardi, Y. Visel and Y. Zbar ASP-DAC 2007

Hardware verification

- There is a growing use of model checking in hardware verification
- SAT-based Bounded Model Checking (BMC) can handle thousands of state elements
- BMC can find errors up to a small search bound (~100) which limits confidence in correctness

Deeper Bound in BMC is Required

- Communication devices includes long transactions
- Large circuits have larger diameter
- Occasionally, BMC can not reach even a small bound for small circuits

Our Contributions

- Improve BMC using assumptions substitution
- Improve BMC using abstraction refinement
- Combine assumptions substitution and abstraction refinement to reach deeper bounds

Bounded Model Checking (BMC)

- Bounded Model Checking takes a model M, a specification p and a bound k
- The safety property p is valid up to step k iff φ = Ω(k) is unsatisfiable:

$$\Omega(k) = I(S_0) \wedge \bigwedge_{i=0}^{k-1} R(S_i, S_{i+1}) \wedge \bigvee_{i=0}^{k} \neg P(S_i)$$

$$\stackrel{p}{\underset{S_0}{\longrightarrow}} \stackrel{p}{\underset{S_1}{\longrightarrow}} \stackrel{p}{\underset{S_2}{\longrightarrow}} \dots \stackrel{p}{\underset{S_{k-1}}{\longrightarrow}} \stackrel{p}{\underset{S_k}{\longrightarrow}} \stackrel{p}{\underset{S_k}{\longrightarrow}} \dots$$

Assumptions Substitution

- It is common that a hardware specification includes assumptions on the inputs
 - For example, "The input clk toggles every cycle"
- \blacksquare We use these assumptions to reduce ϕ
- Smaller φ implies smaller SAT instance
- We substitute the value of the input into φ according to the assumption

Example

- Variables x,y
- x'=(!clk/¥clk')? !y' : x
- y'=(clk/¥!clk')? x' : y
- An input clock clk
- The property to check: p(x,y)=(x=y)
- Assumption: Clock initialized to 0 and toggles every cycle

After unfolding

- $x_1 = !clk_0 / ick_1? !y_1 : x_0$
- $y_1 = \frac{|c|k_0}{|c|k_1|} x_1 : y_0$
- $x_2 = \frac{|c|k_1}{|c|k_2} \cdot \frac{|y_2|}{|c|k_2|}$
- $y_2 = \frac{|c|k_1}{|c|k_2} x_2 : y_1$
- The assumption on the clock

• $clk_0 = 0, clk_1 = 1, clk_2 = 0$

After injecting the clock values

After Constant Propagation clk

- x₀, y₀ free
 x₁ = !y₁
- $y_1 = y_0$
- $X_2 = X_1$
- $y_2 = x_2$

Improved BMC with Abstraction Refinement

- We construct from the hardware circuit a sequence of abstract models
- The model is a conservative abstraction
 - The hardware satisfies the property up to bound k if the abstract model satisfies P up to k
 - Usually, the abstract model is smaller than the hardware

ABMC algorithm

function $\operatorname{ABMC}(M, P, t, \delta)$

- 1. initialize k
- 2. While k < t
- 3. V = concrete model variables
- 4. $\varphi = \text{Build-BMC-formula}(V, k)$
- 5. if SAT-solver(φ) = SAT return CEX
- 6. V' = variables in unSAT core
- 7. if $\frac{|V'|}{|V|} \leq \delta$
- 8. $\varphi = \text{Build-BMC-formula}(V', t)$
- 9. if SAT-solver(φ) = unsat
- 10. return Valid up to t
- 11. k = k + 1
- 12. return Valid up to t

ABMC algorithm function $ABMC(M, P, t, \delta)$ 1. initialize k2. While k < t3. V = concrete model variables4. $\varphi = \text{Build-BMC-formula}(V, k)$ 5. if SAT-solver(φ) = SAT return CEX V' = variables in unSAT core6. if $\frac{|V'|}{|V|} \leq \delta$ $\varphi = \text{Build-BMC-formula}(V', t)$ 8. if SAT-solver(φ) = unsat 9. return Valid up to t 10^{-1} k = k + 111. 12. return Valid up to t

ABMC-CCP: BMC with Abstraction and Assumptions

- The abstract model needs to satisfy p up to bound k
- An input that gets values by an assumption may be required for the abstract model
- We use a new conservative constant propagation (CCP)

Reduces parts that are don't care

The SAT solver complement CCP

CCP: Conservative CP

- We evaluate each node e1 in φ considering all the assumptions
- We create new expression φ' by replacing the expression e=e1 /¥ e2 with e=e1, if e1 evaluated to false
- The expression e2 is not included in ϕ'

ABMC-CCP is Sound

- The expression φ' translated to CNF and is sent to the SAT solver
- If the solver returns unsat, identify all the parts of the circuit that relate to the unsat proof
- These parts forms the abstract model
- It is a conservative abstract model
 - The circuit satisfies the property if the abstract model does

ABMC-CCP is complete

- If a circuit satisfies a property p up to bound k, then the appropriate φ is unsat
- If φ is unsat φ' is unsat
 - Any satisfying assignment to ϕ satisfies ϕ'
- The abstract model build from the unsat proof for φ' does not have any counterexample of lengh k
 - We includes all the parts for repeat the unsat proof

	Circuit	#var	ABMC		ABMC-CCP		Ratio
			bound	time	bound	time	
	P8	27,201	20	Mout	48	Mout	240%
	P15	5,946	281	Tout	512	Tout	182%
	P19	6,907	153	Tout	296	Tout	193%
	P24	5,954	271	Tout	312	Tout	115%
	P38	6,028	187	Tout	300	Tout	160%
	P54	6,028	245	Tout	296	Tout	121%
	P69	5,938	199	Tout	276	Tout	139%
	P45	6,219	369	Tout	1,000	7,869	271%
	P37	7,180	355	Tout	694	Tout	195%
	Pf	1,585	715	Tout	686	Tout	96%
	Pbb	1,458	30	Tout	61	Tout	203%
	Pc	1,648	71	Mout	498	Tout	701%
	Ave						218%

Thanks you for listening