Efficient Automata-Based Assertion-
Checker Synthesis of SERES for
Hardware Emulation

Marc Boulé and Zeljko Zilic

2 McGill

January 24th
ASPDAC 2007

Outline

m Assertion-Based Verification and PSL
m Assertion-Checker Generation

s Automata Synthesis of Sequences (SERES)
= 3 Key Algorithms

m Experimental Results

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 2

Introduction

m Temporal sequences: crucial for temporal
assertion languages such as SVA and PSL

= Need hardware implementation of sequences for
resource-efficient assertion checker circuits
m Assertion checkers useful In
= Hardware emulation
= Post-fabrication silicon debug
= On-line monitoring

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 3

Assertions

m Assertion Based Verification: Assertion failures
used to identify bugs in design

m Assertion: Formal statement for describing correct
behavior of design
= Formal (static) or simulation-based (dynamic) verification
m |[EEE 1850 Property Specification Language (PSL), SVA

m Sequential Extended Regular Expressions (SERES)
used to express temporal sequences of events

= How to implement automata-based SERES for
dynamic verification checkers?

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 4

Verification With Assertions

m always {~reqg;req} |-> ({ [*0:5] ; gnt } abort ~rst)
= Does the property hold?

- Inspect waveform or write code to check the
oroperty (often tedious!)

[IUHUTII Ui riu g iU i

L

+ Assertion does the monitoring for us

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 5

Property Specification Language

Properties

High-level temporal relationships between |
seguences and Booleans

Sequences \
Sequential regular expressions of Booleans |

| Base primitives: Boolean expressions|

Booleans

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 6

Property Specification Language

Properties

| ..., Sequences used in conditional and
obligation contexts in properties

Seqguences

| Concatenation, Disjunction, Fusion, |
Repetition, Goto repetition, Non-consecutive
repetition, Intersection

Booleans

|HDL Boolean expressions, implicationI
and equivalence, PSL built-in functions

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 7

PSL SEREs — Base Operators

m Seguential regular expressions r composed of:

=D Boolean expressions

= {r} Grouping (like parentheses in RE)
mr;r Concatenation

mrr, Fusion (overlapped concatenation)
mr Disjunction

mr&&r, Intersection, length-matching

= [*0] Empty SERE (like € in RE)

m r[*] Kleene closure (like * in RE)

m Example: {{busy[*2] ; ack } | {busy[*5] ; error }}

ASPDAC 2007 Assertion-Checker Synthesis of SEREs

PSL SERES — Sugaring

s SERE sugaring rules in PSL (non-exhaustive):
mr*c] =r;r;...;r Fixed count repetition, c>0
m [*l:h] = r[*l] | ... | r[*N] Bounded repetition
m b[->] = (=b)[*]; Db Goto repetition
s b[->c] = {b[->]}[*c]
m b[=c] = b[->]; (=b)[*] Non-consecutive repetition

s Example: {{busy[*]} && {reset[->]}}

_ Matched
Start matching

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 9

MBAC Checker Generator

m Circuit-level checkers from assertion statements

Al
Device Undere Assertion a2

Verification Checkers
HDL AN

MBAC
Checker
Generator

ASPDAC 2007 Assertion-Checker Synthesis of SEREs

Checker Generation Process

m Assertion ™ Finite Automaton *=» HDL
assert always ({a} |=> {{c[*0:1]; d} | {e} D)

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 11

SERE Modes In Properties

= Conditional Mode: Identify all occurrences of
expression for a given start condition

= Obligation Mode: Identify the first failure of
expression for a given start condition

~req Q rec @

Conditional Obligation

m always {~req;req} [-> ({[*0:3] ; gnt }) “|->" is temporal
Implication

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 12

SEREs vs. Regular Expressions

m SERES extend traditional REs with:

= Length-matching intersection

= Fusion (overlapped concatenation)

= Based on Boolean expressions (not mutually exclusive
symbols as in RES)

Clhla]lr

S

-S>

Booll

Bool2

Bool3

\ bl b3
/

m SERES In properties — failure detection also
= Obligation mode needed, not only occurrence detection

ASPDAC 2007

Assertion-Checker Synthesis of SEREs

13

SERE FA Construction
(Conditional mode)

= Inductive construction [Hopcroft'00]
m Base case: Top level Boolean Expressions b

m Inductive cases:

m Concatenation
m Kleene closure

effect as: NFA Construction
[Hopcroft’'00] + € Removal

= Disjunction } Custom algorithms —> same

= Fusion
= [ntersection (length matching)

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 14

SERE FA Construction — Fusion

m Example for {b;; b,[*]}:{bs; b,} O(m+n)

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 15

SERE FA Construction — Fusion

m Example for {b;; b,[*]}:{bs; b,} O(m+n)

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 16

SERE FA Construction —
Intersection

= Example for {b,[*];b2}&&{bs; b,} ch ?rtn%?se

n states

State construction stack:

— 1,C: no edges in C. (1 & C final)
™ 0,C: no edges in C.
> 0,B:“b1 A b4” 0,C;“b2 A b4” 1,C
— 1,B: no edges in 1.
= 0,A:*b2 A b3” 1,B; “bl A b3” 0,B

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 17

SERE FA Construction —
Intersection

Worst case
O(mn)

m Example for {b,[*];b2}&&{b,; b,}

n states

State construction stack:

1,C: no edges in C. (1 & C final)
0,C: no edges in C.
0,B:“bl A b4” 0,C;“b2 A b4” 1,C
1,B: no edgesin 1.
0,A:*b2 A b3” 1,B; “b1 A b3” 0,B

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 18

Obligation Mode SERES In
Properties — FirstFail()

ASPDAC 2007

Strong Determinization
Worst case O(e")

Pseudo Negation:

- Failure Conditions

Assertion-Checker Synthesis of SEREs

19

Obligation Mode SERES In
Properties — FirstFail()

ASPDAC 2007

Strong Determinization
Worst case O(e")

Pseudo Negation:
- Failure Conditions
- Remove old final states

Assertion-Checker Synthesis of SEREs

20

Experimental Results

Properties

IBM FoCs 2.03

(Xilinx 8.1.03i for XC2V1500-6)

FF

LUT

MHz

never { a;d;{b;a}[*2:4];c;d }

25

24

622

never { {a[*];b[*1:3]} | {c;d[*1:2];e} }

24

23

454

never { {[*]:a} && {b[=0]} }

6

4

622

never {a; {b;c;d} & {e;b;a;d} ; a}

13

12

622

never { {a[*]} : {b[*]} }

=

=

483

always {a} |=> { {b;c;d} & {e;d;b} }

No Output

always {a} |=> { e;d;{b;e}[*2:4];c;d }

No Output

always {a} |=>{ b ; {c[*0:4]} & {d} ; e }

=

10

359

always {a} |=>{ b ; {c[*0:6]} & {d} ; e }

No Output

always {a} |=> {{{c,d}[+]} && {e[->2]} }

ASPDAC 2007 Assertion-Checker Synthesis of SEREs

6

10

425

Conclusion

= Introduced an efficient automaton-based
Implementation of SERES for creating checkers
for dynamic verification and silicon debug
= Boolean-expressions in automata symbols
= Fusion and intersection algorithms
= First failure detection algorithm for use in properties

m These technigues for SERES +
property implementation from [HLDVT’06] =
efficient assertion checking circuits for PSL

ASPDAC 2007 Assertion-Checker Synthesis of SEREs 22

	Efficient Automata-Based Assertion-Checker Synthesis of SEREs for Hardware Emulation
	Outline
	Introduction
	Assertions
	Verification With Assertions
	Property Specification Language
	Property Specification Language
	PSL SEREs – Base Operators
	PSL SEREs – Sugaring
	MBAC Checker Generator
	Checker Generation Process
	SERE Modes in Properties
	SEREs vs. Regular Expressions
	SERE FA Construction �(Conditional mode)
	SERE FA Construction – Fusion
	SERE FA Construction – Fusion
	SERE FA Construction – Intersection
	SERE FA Construction – Intersection
	Obligation Mode SEREs in Properties – FirstFail()
	Obligation Mode SEREs in Properties – FirstFail()
	Experimental Results
	Conclusion

