
1

RTOS and Codesign Toolkit for RTOS and Codesign Toolkit for
Multiprocessor SystemMultiprocessor System--onon--ChipChip

Shinya Honda, Hiroyuki Tomiyama, Hiroaki Takada

Graduate School of Information Science, Nagoya University
honda@ertl.jp

2

OutlineOutline
Motivation
Real-Time Operating Systems for Multiprocessor systems

FDMP kernel
Codesign Toolkit for MPSoCs

Systembuilder
A Case Study
Current Status
Summary

3

MotivationMotivation
Multiprocessor design have become popular in embedded domains

Increasing the number of processors is generally more
power/performance efficient than increasing the clock frequency

RTOS have become commodity tools in embedded systems
Over 80% of embedded system development project in Japan
have used RTOS

In the development of embedded systems running on MPSoCs,
RTOS’s for MPSoCs are necessary

RTOS specification and implementation for MPSoCs : FDMP kernel
Support asymmetric MP systems (AMP)

4

Motivation(contMotivation(cont.).)
Mapping application tasks onto processors（design space exploration）

One of the most important decision in the design of MPSoCs

In order to achieve the best mapping, designer has to accurate
estimation of design quality for each candidate mapping

Design Space become large
With hardware/software codesign and C-based behavioral synthesis
Mapping to hardware modules is possible

System-level design toolkit : SystemBuilder
Evaluate the quality of mapping very quickly
Start with system specification in the C language
Takes the system specification and mapping directive as input and
Generates implementation

5

RealReal--Time Operating Systems for Multiprocessor Time Operating Systems for Multiprocessor
systemssystems

6

Classification of Multiprocessor SystemsClassification of Multiprocessor Systems
From a view point of RTOSs, multiprocessor systems

are classified several type

Tightly-coupled MP system with shared memory
Classified into two types

Symmetric multiprocessor (SMP)
Functionally distributed multiprocessor (FDMP)

Asymmetric MP systems (AMP)
Using in Embedded System.

Loosely-coupled MP system（Distributed MP systems）
latency of inter-process communication is very slow
Using application level inter-process communication
which support large unit size

7

Symmetric multiprocessor (SMP)Symmetric multiprocessor (SMP)
Every processor can access all resources in the system

memory, peripherals, etc.
An application task can be executed on any processor
An example of SMP Hardware : ARM MPCore

＊FromARM WebSite

Up to 4 processors
Each processor can access
all resource

8

Functionally distributed multiprocessor (FDMP)Functionally distributed multiprocessor (FDMP)
A processor can access only a limited set of resources in the system

Each processor assigned specific role (faction) in many case
An application task is statically allocated to a specific processor
An example of FDMP Hardware : Toshiba MeP

＊From Toshiba WebSite ”Introduction
to MeP(Media Embedded Processor)”

MPEG2 Codec LSI
Each processor has
specific hardware (Co-
processor).

9

Multiprocessor Systems for Embedded SystemsMultiprocessor Systems for Embedded Systems
Many embedded systems are dedicate to specific applications

Application tasks can be statically mapped onto processor
in such a way
Processor loads are balances well
Inter-processor communication is minimized

FDMP architecture has advantage in many embedded system
Cost, Power consumption, Realtime performance
Developed RTOS for this architecture

10

uITRONuITRON SpecificationSpecification
RTOS specification for FDMP systems is

based on uITRON Specification.

A standardized specification of RTOS kernel for small- to mid-scale
embedded systems.

Defines a set of API functions (service calls)
The fundamental subset is called Standard Profile(81 API)

ITRON is just specification, no t software product.
Current status

Most popular RTOS specification in Japan
20 - 30% of embedded systems use uITRON
Especially in consumer electronics.

The latest release is uITRON version 4.0.

11

TOPPERS/JSPTOPPERS/JSP KernelKernel

FDMP Kernel has been implemented based on TOPPERS/JSP Kernel

A reference implementation of the Standard Profile of uITRON 4.0
Initially, developed by our laboratory
Currently, maintained by Non-Profit-Making Organization
TOPPERS Project

Incorporated in September 2003. (President: Prof. Takada)
http://www.toppers.jp/
>100 members (universities, companies, and individual
volunteers)

Supported processors include
SH1/3/4, H8, M32R, ARM7/9, MIPS3, NiosII, V850, etc.

12

TOPPERS/JSP Kernel (cont.)TOPPERS/JSP Kernel (cont.)
Compact and highly portable
Free, open source software

Can be used for research, education, and commercial purposes.
Production quality

Actually, used in a number of products

Audio Interface
(Roland)

Ink-jet printer
(Brother Industries, Ltd)

Karaoke microphone
(Panasonic)

13

Design Principles of FDMP Kernel Design Principles of FDMP Kernel
Problems for Application level inter-processor synchronization and
communication

Programming such programs are difficult and cause of
time-consuming and error-prone
Application programs need to be modified every time mapping is
changed

APIs
Same APIs for both intra-processor synchronization and
communication and inter-processor ones
Inter-processor synchronization and communication can be
realized with same uITRON Specification API

Other requirements
Predictability
Scalability for number of processor

14

Classification of ObjectsClassification of Objects
Each kernel object (tasks, semaphore, etc.)

belongs to one of the processors
Static mapping

Allocation of kernel objects to processor is statically
Tasks and Interrupt handlers can be executed only the mapped
processors

15

System Status System Status
CPU locked state

System state in uITRON Specification
Exclusively executing a specific task
Interrupt handlers are not started
Dispatching does not occur
Often used for Mutual exclusion

CPU locked state in FDMP Kernel
Controlled processor-by-processor
independently
Scalability for number of processor
Mutual execution should be implemented
using synchronization object

semaphores, eventflag, etc.

CPU2CPU1

Task11 Task21

loc_cpu()

CPU locked
State

Interrupt
Handler

Start Interrupt handler

Task21continues
execution.

Interrupt Request

16

FDMP Kernel ImplementationFDMP Kernel Implementation
Lock unit

Mutual exclusion unit for kernel object control blocks (TCB,etc.) in
multiprocessor environment
Design two lock unit (a Task Lock and an Object lock) for each
processor

Minimize dead-lock avoidance system call
Scalability for number of processor

Support Target
ARM MPCore, Altera NiosII, Xilinx Microblaze, Toshiba MeP

17

EvaluationEvaluation
Evaluate code size and performances of FDMP Kernel

Target system
Altera NiosII/s 50MHz,

Soft-core processor for FPGA
Each processor has local memory

Avalon bus
Star-type network
No contention happens as long as the processors access their
local memory

18

Evaluation : Code sizeEvaluation : Code size
Comparison of code size between JSP Kernel and FDMP Kernel

Not include application code and data for kernel objects
Text section

60% larger than JSP Kernel
A routine for acquiring and releasing lock is inserted in all APIs
A new routines for avoiding deadlocks is added in some APIs

Data and Bss section
An increase is trivial
TCB(Task Control Blocks) is extended by 6bytes

Kernel text data bss

JSP 26671bytes 5bytes 68bytes

FDMP 42707bytes 6bytes 76bytes

19

Evaluation : PerformanceEvaluation : Performance
Evaluate execution times of two system calls

System calls
wup_tsk : Wakes up task in the wait state

Acquires a one lock : a task lock
sig_sem : Released for semaphore

Acquires two locks : a task lock and an object lock

Conditions
With invoked task dispatch
Without invoked task dispatch

20

Evaluation : Evaluation : Performance(contPerformance(cont.).)

Without Task Dispatch With Task Dispatch
sig_sem wup_tsk

5usec

10usec

10usec

7usec

11usec

17usec

Kernel wup_tsk sig_sem
JSP 5usec 6usec

FDMP(Intra-processor) 9usec 13usec

FDMP(Inter-processor) 9usec 18usec

Execution time becomes longer even in case of intra-processor
system call

Additional routines for mutual exclusion
Data structures being more complicated

In case of system calls with dispatch, FDMP(inter-processor) are
longer than those of FDMP(intra-processor)

The Increased overhead for dispatching a task on different
processor

21

Codesign Toolkit for MPSoCsCodesign Toolkit for MPSoCs

22

SystemBuilder SystemBuilder
SystemBuilder is a system-level design environment for MPSoCs

Main Feature
System-level description in C language
SW/HW mapping by human designers
Generation of software running on RTOS
Generation of synthesizable hardware with a commercial tool
Automatic SW/HW interface including interface circuits and
device driver
Both single processor and multi processor supported
SW/RTOS/HW cosimulation at various abstraction levels (single
processor only)
FPGA implementation

23

SystemBuilder(contSystemBuilder(cont.) .)
Design Flow

Appliction description with C
language
Behavioral verification of the
application description
Implementation synthesized with
designated mapping (architecture)
Performance estimation of the
implementation
Repeat the process if the
performance is insufficient

fac
ilitate

 fast re
-
m

appin
g

24

System Description in SystemBuilderSystem Description in SystemBuilder
An application is described as a set of sequential processes and

communication channels among them

Processes(P)
Unit of concurrent execution
Unit of mapping
Written in the C language
SW : task
HW : module with single FSM

Communication Primitives(CP)
Three kinds of fundamental channel
Non-Blocking(Register)
Blocking(FIFO)
Memory

An example of system

25

System System DeFinitionDeFinition (SDF) (SDF) filefile
The overall structure of application specification
Mapping of processes to processing elements (processors and
hardware module)

SYS_NAME = test

SW(CPU1) = P1, P4
SW(CPU2) = P2
HW = P3

BCPRIM CP1, SIZE = 32, DEPTH = 0
BCPRIM CP2, SIZE = 32, DEPTH = 1
NBCPRIM CP3, SIZE = 32
NBCPRIM CP4, SIZE = 2
MEMPRIM CP5, SIZE = 8, DEPTH = 20

SYS_NAME = test

SW(CPU1) = P1, P4
SW(CPU2) = P2
HW = P3

BCPRIM CP1, SIZE = 32, DEPTH = 0
BCPRIM CP2, SIZE = 32, DEPTH = 1
NBCPRIM CP3, SIZE = 32
NBCPRIM CP4, SIZE = 2
MEMPRIM CP5, SIZE = 8, DEPTH = 20

BEGIN_PROCESS
NAME = P1
FILE = “p1.c"
USE_CP = CP1(OUT), CP3(INOUT),

CP5(OUT)
END

BEGIN_PROCESS
NAME = P2
FILE = “P2.c"
USE_CP = CP1(IN), CP4(OUT), CP5(IN)
END
….

BEGIN_PROCESS
NAME = P1
FILE = “p1.c"
USE_CP = CP1(OUT), CP3(INOUT),

CP5(OUT)
END

BEGIN_PROCESS
NAME = P2
FILE = “P2.c"
USE_CP = CP1(IN), CP4(OUT), CP5(IN)
END
….

Mapping

CP Declaration

Process Declaration

Connection

26

SynthesisSynthesis
SystemBuilder takes an SDF file and C programs as input,

and automatically generates implementation

Software Synthesis
Process (P1,P3,P4)

Translated to software tasks for
FDMP Kernel

CP(CP1,CP3)
Replaced with corresponding
synchronization/communication
services calls of the FDMP
Kernel

27

Synthesis : Hardware SynthesisSynthesis : Hardware Synthesis

Hardware Synthesis
Process (P3)

Synthesized with a commercial
behavioral synthesis tool（eXCite）

SystemBuilder automatically
executes eXCite to generate RTL

CP
Translated into HW/HW
communication circuit
registers, FIFO, memory

28

Synthesis : Interface SynthesisSynthesis : Interface Synthesis

P1

P3P4

P2CP1

CP2

CP3 CP4CP5

To Hardware

To Software

BUS

CPU1 PECPU2

P1 P4 P2 P3

Behavioral
Synthesis

To Software

CompileCompile

Interface Synthesis
CP(CP2, CP4, CP5)

Software side
Device drivers are generated

Read/Write interface
Interrupt Handler

Hardware side
HDL description of interface
circuit are generated
Register, FIFO, Memory

29

Synthesis : Interface Synthesis : Interface Synthesis(contSynthesis(cont.).)
HW/SW communication is based on memory mapped I/O accesses

Automatic address assignment to the generated storage
Address decoder circuit and an interrupt controller are synthesized

These synthesis steps are completely automated
Can explore a large number of different mappings in short time

30

A Case StudyA Case Study

31

Case study on design space explorationCase study on design space exploration
Evaluate the effectiveness of SystemBuilder

JPEG decoder application
Consists of seven processes
Four processes, i.e., iquantize, idct, pshift, and yuv2rgb, can be implemented in
software or hardware

Target
Single-processor and dual-processor architecture platforms
Xilinx Virtex-2, Microblaze

32

Case study on design space exploration (cont.)Case study on design space exploration (cont.)
Synthesized and Evaluated 12 designs

With different mapping and both single and dual processor platform
Const-performance trade-offs

Evaluation can be done only a day by single designer

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Area[Slice]

D
ec

od
e

Ti
m

e[
m

se
c]

1CPU + HW
2CPUs + HW

33

Current StatusCurrent Status

34

Current Status on SystemBuilderCurrent Status on SystemBuilder
Extending Systembuilder

Abstract (HW/SW) interfaces description with higher abstraction
and synthesis technique
Architecture explorations

Interface description with higher abstraction
goal

Interface description in the system level should be independent of
architecture

Current version of CPs do not achieve this goal, because abstraction
level of interface description is still low

We are defining communication primitives and APIs with higher
abstraction.

35

Current Status on Current Status on SystemBuilder(contSystemBuilder(cont.).)

B
U

S
I/F

D
ev

ic
e

R
eg

is
te

r

Architecture explorations
Support wider design space (multi-bus, multi PEs)
Takes as input not only an application description but also an
architecture template

36

SummarySummary

37

SummarySummary
Principles and techniques for design and implementation of
RTOS for embedded multi processor (FDMP Kernel)

System-level design toolkit for rapid design and evaluation
of embedded multi processor (SystemBuilder)

Current Status
Abstract (HW/SW) interfaces description with higher abstraction
and interface synthesis from it
Wider space for architecture explorations

FDMP Kernel is available as a open source software from
http:/www.toppers.jp/

38

Thank you for listening!

	RTOS and Codesign Toolkit for Multiprocessor System-on-Chip
	Outline
	Motivation
	Motivation(cont.)
	Real-Time Operating Systems for Multiprocessor systems
	Classification of Multiprocessor Systems
	Symmetric multiprocessor (SMP)
	Functionally distributed multiprocessor (FDMP)
	Multiprocessor Systems for Embedded Systems
	uITRON Specification
	TOPPERS/JSP Kernel
	TOPPERS/JSP Kernel (cont.)
	Design Principles of FDMP Kernel
	Classification of Objects
	System Status
	FDMP Kernel Implementation
	Evaluation
	Evaluation : Code size
	Evaluation : Performance
	Evaluation : Performance(cont.)
	Codesign Toolkit for MPSoCs
	SystemBuilder
	SystemBuilder(cont.)
	System Description in SystemBuilder
	System DeFinition (SDF) file
	Synthesis
	Synthesis : Hardware Synthesis
	Synthesis : Interface Synthesis
	Synthesis : Interface Synthesis(cont.)
	A Case Study
	Case study on design space exploration
	Case study on design space exploration (cont.)
	Current Status
	Current Status on SystemBuilder
	Current Status on SystemBuilder(cont.)
	Summary
	Summary

