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Timing Models for Digital Logic

* Replace gate with simple macromodel that
captures timing/delay properties

* motivation: fast timing analysis of large digital
systems

-

2_

-0.5
0

ASP-DAC, 2007/01/25. Slide 2



Existing Timing/Delay Modelling Methods

* Current-source models struggling with:

- internal nodes / capacitances

- memory and dynamics (latches/registers)

> multiple input switching (MIS)

- power/ground supply droop

- dynamic nonlinear loading

* Ad-hoc, manually derived topological templates

- difficult to manually abstract second-order device effects
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High Speed Digital == Analog/RF!

* Shrinking device dimensions
* highly non-ideal device characteristics

* Increasing chip density/complexity
* interference and noise

* Increasingly visible analog/high-frequency effects

> nonlinear resistive/capacitive loading
- interconnect (inductive/capacitive/transmission lines)

> dynamic IR drops, crosstalk
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High Speed Digital == Analog/RF!
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Trajectory Piecewise Macromodelling

* Push-button macromodel generation for nonlinear
systems - previously applied to analog/RF

* Example: clipping and slew-rate captured for current-
mirror op-amp
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TP Macromodelling for Digital Logic
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Automated Delay Model Extraction (ADME)

* Technique for extracting accurate timing delay models
from SPICE-level netlists

* Core: trajectory-piecewise nonlinear macromodelling
(TPWL/PWP)

* Automated: push-button extraction via algorithm
* Extracts accuracy from lowest (transistor) level

* Effectively captures complex nonlinearities and effects

> multiple input/output transitions
- linear/nonlinear loading and capacitive effects
- supply droop and substrate interference

* VValidated on important combinatorial/sequential circuits

* General in applicability: independent of design-style,
complexity, topology, process technology
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Generating Delay Models via ADME:
an illustration

 Example: 2-input XOR gate vdd

* Designed for 0.18micron z{ﬁ ;; ormos
static CMOS technology |
* MOS models modelled A Aﬂlﬁ B*ﬁ out

using BSIM3 8)) >°" T
i

* Important controlling parameters for ADME algorithm:
~ training input / expansion points
> merging of trajectories
> optimal order size
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Training Input and Expansion Points:
speed and accuracy tradeoff

* Good training input:
- covers extreme bound of state-space

~ covers frequently visited state-space
~ capture dynamic nonlinearities

* Selection of macromodel “expansion points”:

- relative error > a (error tolerance)
> lower a: more expansion points, lower speedup

* For XOR-2, a=0.005 ~ 0.05, N=36, g=10, speedup=2x
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Re-usability of Macromodel and Merging:

broadly applicable macromodel

* Same training input: =
> no re-generation of 5
macromodel. | D e
- good accuracy achieved S o .
even with different inputs. =

u] D!S 1I 1!5
Simulation Time [g]

* Merging of trajectory: ; — —
- better state-space A ||
coverage " & g e
> redundancy lower,
negligible reduction in |
simulation speedup.
(1.5x here)

Irpaut-1: Full

Input-Clutput wanetorm V]

1 1
1 1.5 2 2.5
Simulation Time [s] oD

u}
ASP-DAC, 2007/01/25. Slide 11

I
a 0.5



Optimal Model Order (Size):
common minimum subspace

* Singular Value based
common subspace:
- SVD of projection bases
- sudden drop in value =>
Indicates common
minimum subspace.

* Effect of order less than
optimal g=10:
> Plot shown for g=8.
> Model does not converge
for q < 8.
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Application and Validation of ADME:
accuracy and speedup illustration

* Combinatorial circuits:
> multi-input gates (NAND-2, NOR-2, XOR-3, 1-bit Full-Adder)
> multi-level cascade (internal nodes effect)

* Sequential circuits:

> NAND based latch
> NOR based latch

o Effects to be studied with above circuits:

- internal node (capacitive) effects
- loading effect
- transistor internal nonlinear effects
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Multi-input Combinatorial Gate/Circuits

e 2-input NAND: -
> W/L: 3 (nmos), 6 (pmos) x Adms Bd[ma
-~ capacitance of internal node B—Dgt Out
'X' affects propagation delay — A_ dm e
based on input pattern X N
B—E:m —Cint
* Effects observed with L
ADME based macromodel: -
» captures above internal L g T
node effect N VAR Ny
- case(b) indicates worst-case =i : s pmonie |
delay (A=1, B=1 ->0) g | e
* Simulation results: ENN 4 cme
> Full: 28.7s émg 1 r:a;e(b) A
- ADME: 16.6s (speedup 1.7x) o
> MM generation time: 4s o—— e —

simulation Time [s] e
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Multi-input Combinatorial Gate/Circuits

* 3-input XOR: e Y via

- 24 MOSFETSs (n=68, q=24) Aﬂ?ﬁ?ﬁ E
-

> manual macromodelling
more laborious than 2-input = |

Vdd

ADME based macromodel: .-

> captures internal node effect ¢
as shown by black curve

> propagation delay with load
(red) is higher than unloaded
(cyan), as expected

e Effects observed with B %

e Simulation results:

~ Full:  168.7s
- ADME: 39.5s (speedup 4.2x)
> MM generation time: 12s
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Multi-input Combinatorial Gate/Circuits

e 1-bit Full Adder: . N > o
- 42 MOSFETs (n=113, g=28) cin ) >

rd
Xor2

- manual modelling difficult and =
error-prone than automated S
D D
» Effects observed with ADME —}
based macromodel: Nandz
> matches actual data
accurately B Ty R e
- sum (red) bit L-H delay more ] Ly P R s
than H-L delay as expected S | W S0
(weak pull-up: MOS in series) ¢
* Simulation results: =M
> Full:  219.2s E o
- ADME: 32.8s (speedup 6.7x) oap | £%
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Multi-level Cascade Combinatorial Circuits

e Chain of basic gates: A
- 4-input circuit (n=70, q=22) B_}
- 9pF capacitive load applied Nand? 4\)1: [ [
» Effects observed with ADME * 6 Lor
_ D or2
based macromodel:
> matches actual data Nor2 =

accurately even for cascaded
gates, even with 4-input circuit

- internal node waveform
(black) shows good matching
at internal nodes too.
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* Simulation results:
- Full: 143.8s S
- ADME: 28.2s (speedup 5x) ol Tk F
- MM generation time: 14s

InputCutput wavelorm IV]

o

ASP-DAC, 2007/01/25.



Basic Sequential Circuits

* NAND/NOR based latch:

- set-reset latch (n=26, q=8)
> no capacitive load applied

o Effects observed with
ADME based macromodel:

> effectively maintains and
captures memory (even
don't care) state of latch
(red and magenta)

> multi-output waveforms
matching also verified

e Simulation results:

~ Full:  53.8s
-~ ADME: 18.2s (speedup 3x)
> MM generation time: 10s
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Summary and Future Directions

* ADME: automated extraction of accurate timing
delay models from SPICE-level netlists

* Key advantages:

* Automated: push-button extraction via algorithm
* Accurate: from lowest (transistor) level
* Broadly applicable:

> multiple input/output transitions

- linear/nonlinear loading and capacitive effects
- supply droop and substrate interference

> internal dynamics

> memory and latches

* VValidated on important combinatorial/sequential circuits

e Future work

* specialization/reimplementation of TPW core to
obtain much greater speedups
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