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Introduction of MOR
Model Order Reduction and Interconnect Analysis

MNA Equation  (G+Cs)x=Bu y=LTx
Matrices G C are large, MOR reduces those large 
systems into smaller one, which facilitates the 
subsequent simulation.
Typical approaches

Projection based method 
Balanced Truncation Reduction based method
Topology reduction based method

Static limitations



Previous Works
MOR on Variations

Perturbation Parametric Approach
Curve Fitting and Coefficient Matching  [Liu DAC99]
Multi-variable Taylor expansion and Two-step matching [Li 
ICCAD05]

Stochastic Approach 
Polynomial chaos representation and reduction [Wang 
ICCAD04]

Interval arithmetic Approach
Change the underlying arithmetic in the MOR framework 
[Ma ICCAD04, ISPD05]



Wang’s work in ICCAD04
Basics of Stochastic Parametric MOR 

Assumes the variations of the system are stochastic
Treat the whole system as a stochastic process 
Expand and represent the system via Polynomial Chaos 
expansion
Reduction could further be made on the augmented system

Limitation
Lack of ability to handle Non-Gaussian variation



Support for Non-Gaussian Variation

Reasons for supporting non-linear or Non-
Gaussian variations

Some variations are intrinsically Non-Gaussian, (e.g
leakage) or the data from actual measurement
Gaussian variations may generate Non-Gaussian if 
the operator non-linear (e.g. extraction)

Methods to support Non-Gaussian variations
Multi-variable Taylor expansion
Polynomial Chaos expansion
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Two representations on a log-normal variable

A log-normal variable e ε

Truncated Taylor expansion

Polynomial Chaos expansion
Orthogonal Hermit Polynomials 
as bias
Determine the Coefficients 
under inner product 

e1/2(1+ε+(ε2-1)/2+(ε3-3ε)/6)
(third order example)



Apply PC Representation to SMOR
Stochastic MNA equation

Stochastic System matrix represented as affine or 
truncated higher order polynomial

Stochastic response via truncated Polynomial Chaos 
expansion

Galerkin method to minimize the truncation error 
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Formulation of the Augmented System
Truncated PC representation of the system matrices

Truncated PC representation of the stochastic response

Put those into MNA
We can get 

Equations on the inner product 



Block matrix form of the augmented system

Properties of the augmented system
Block symmetric
Many inner products of basis functions                       are zero
Sparse and diagonal dominant Matrix

Formulation of the Augmented System
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Efficient Implementation of the PC-SMOR

PRIMA like algorithm on the augmented system
Other MOR reduction could also be used. 
Note in the MOR process, in order to keep the implicit 
representation of the augmented system. Krylov space 
iteration method and Implicit Matrix-vector product are used.



Efficient Implementation of the PC-SMOR
Implicit Matrix-vector product

Iterative methods by cases
CG for symmetric case (e.g RC)

Might not work for very large variation, not S.P.D
GMRES for non-symmetric case

Precondition by cases
Two-level Preconditioner

Block Jacobi at higher (Block)  level
ILUTP at lower (matrix) level 

Efficient to construct the preconditioner, which only needs one 
ILUTP on the diagonal blocks or even one block of diagonals
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Experimental Results
Tool implemented using C++

Sparse Matrix Library used : GMM++
Other Library used: SuperLU, Lapack

Testing Environment
AMD2000+, 768M Mem, GNU/Linux

Test Circuit
RC and RLC, node size from 113 to 5452
Larger size is OK for the tool , but we want MC and direct solving still 
could give results

Variation tested:
Log-normal variation, four variables tested
Gaussian one is similar to [Wang ICCAD04] thus we omit those

Expansion order of PC used: 2
Sampling number of Monte Carlo: 4000



Experimental Results



Experimental Results
Generally 50X faster than  Monte Carlo. 
Iterative method which leverage the implicit 
representation uses less memory (1/Nw) and runs 
2~5 faster than direct solving using SuperLU.
PC representation on input variation also give more 
accurate delay results than that use Taylor 
expansion as in [Wang ICCAD04]



Conclusion
Represent Non-Gaussian Input variation using PC 
rather than Taylor gives more accurate results
Gives out the derivation of the augmented system 
and give out an Implicit form of the augmented 
system
Implementation with implicit form saves much 
memory also very efficient comparing with original 
method



That’s all. Thanks for Listening.
Q&A
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