
25-Jan-2007 12th ASP-DAC, Japan 1

A Retargetable Software Timing Analyzer
Using Architecture Description Language

Xianfeng Li:
Abhik Roychoudhury:

Tulika Mitra:
Prabhat Mishra:

Xu Cheng:

Peking Univ. (PKU)
National Univ. of Singapore (NUS)
National Univ. of Singapore (NUS)
Univ. of Florida (UFL)
Peking Univ. (PKU)

25-Jan-2007 12th ASP-DAC, Japan 2

Timing Analysis

Problem statement
Given a program and an architecture, estimate the
maximum/minimum execution time of the program for
all possible inputs

Worst Case Execution Time (WCET)
Essential information for real-time scheduling

25-Jan-2007 12th ASP-DAC, Japan 3

Worst-Case Execution Time (WCET)
D

is
tri

bu
tio

n
of

 E
xe

cu
tio

n
Ti

m
e

Measured execution times

Possible execution times
Timing Predictability

BCET WCET

Time

Observed
WCET

Estimated
WCET

Observed
BCET

Estimated
BCET

25-Jan-2007 12th ASP-DAC, Japan 4

Timing Analysis

Problem statement
Given a program and an architecture, estimate the
maximum/minimum execution time of the program for
all possible inputs

Worst Case Execution Time (WCET)
Essential information for real-time scheduling

Static WCET Analysis
Derive a conservative estimate on WCET
Program path + instruction timing

25-Jan-2007 12th ASP-DAC, Japan 5

Microarchitecture Modeling
Microarchitecture innovations

For average case performance
Poor predictability – bad for real-time

Microarchitecture modeling started 15+ years ago
human understanding
custom modeling algorithms
handcrafted code

A retargetable framework is needed
Input:

Program
Processor spec. (Architecture Description Language)

Output: WCET

25-Jan-2007 12th ASP-DAC, Japan 6

WCET Analysis Framework

Integer Linear Programming (ILP) based analysis

maximize
Tprog = ∑ NB * CB

where
B ∈ BasicBlocks(prog)
NB: execution count of B
CB: WCET of B

subject to Control Flow Graph (CFG) constraints

affected by hardware

25-Jan-2007 12th ASP-DAC, Japan 7

Basic Block Timing Analysis (CB)

Execution graph:
Nodes: <instr, stage>
Relations:

dependences
contentions
parallelisms

Time interval based
Not simulation:
all cases are covered
No state space explosion:
avoid enumeration on
single time points

<I1, IF> <I1, ID> <I1, EX> <I1, WB> <I1, CM>

<I2, IF> <I2, ID> <I2, EX> <I2, WB> <I2, CM>

<I3, IF> <I3, ID> <I3, EX> <I3, WB> <I3, CM>

I1: mult r4, r2, r3

I2: mult r7, r6, r5

I3: add r10, r7, r8

Initialization(G);

repeat {

for each node v in G {

earliest_time(v);

latest_time(v);

}

} until (a fixed point is reached)

Algorithm outline:

[01, 0]

[li, ui]

[ln, un]

Modeling Out-of-Order Processors for WCET Analysis
Li et al., Real-Time Systems Journal, Nov 2006

25-Jan-2007 12th ASP-DAC, Japan 8

Architecture Description Language (ADL)

Formal description of processor architecture
ISA + Microarchitecture

Existing ADLs:
HMDES, LISA, MADL, UPFAST, EXPRESSION...

Investigated retargeting issues
Compilation, simulation, synthesis, validation

25-Jan-2007 12th ASP-DAC, Japan 9

EXPRESSION ADL

Developed by Prof. Dutt’s group at UC-Irvine

Processor ADL

ISA Microarchitecture

Structure Behavior

described in main ADL file described in separate C++ files

25-Jan-2007 12th ASP-DAC, Japan 10

An Example ADL (acesMIPS)

FETCH

DECODE

ALU1_READ ALU2_READ LDST_READ...

ALU1_EX ALU2_EX LDST_EX...

WB

IF

ID

RF

EX

WB

(PIPELINE_SECTION
(PIPELINE FETCH DECODE READ_EXECUTE WB)
(READ_EXECUTE (ALTERNATE read_ex0 ... read_ex4)
(read_ex0(PIPELINE ALU1_READ ALU1_EX))
...
(read_ex4(PIPELINE LDST_READ LDST_EX))

(ARCHITECTURE_SECTION
(SUBTYPE UNIT FetchUnit DecodeUnit OpReadUnit ...)
...
(DecodeUnit DECODE

(CAPACITY 12)
(OPCODES all)
...

// DerivedUnit.h
class DecodeUnit : public SimpleUnit
{

private:
int instBufsize;
...

}
ADL component library

25-Jan-2007 12th ASP-DAC, Japan 11

From ADL To Execution Graph

Execution graph: nodes + relations

processor description

execution graph

ADL
architecture

spec.

graph
nodes

ADL
component

library

node
relations

×

processor description

execution graph

ADL
architecture

spec.

graph
nodes

ADL
component

library

node
relations

WCET
component

library

component
mapping

25-Jan-2007 12th ASP-DAC, Japan 12

WCET Component Library

Models characterizing WCET properties of components

Goals:
Abstract, architecture independent
ADL component to WCET component mapping is easy

Observations:
Pipeline path: a series of processing elements interfaced by
storage elements
Behaviors of PEs are often dictated by SEs
Limited classes of SEs based on their timing behavior

25-Jan-2007 12th ASP-DAC, Japan 13

WCET Component Library (cont)

Array model
access latency IFArray

(I-Cache)

<I, IF>

[l, u]

25-Jan-2007 12th ASP-DAC, Japan 14

WCET Component Library (cont)

Array model
access latency

FIFO model
producer-consumer
size limit
parallelism limit

IFArray
(I-Cache)

FIFO
(I-Buffer) ID

..
.

<I, IF>

[l, u]

<I, ID>

<I-n, ID>

..
.

<I+p, IF>

25-Jan-2007 12th ASP-DAC, Japan 15

WCET Component Library (cont)

Array model
access latency

FIFO model
producer-consumer
size limit
parallelism limit

Pool model
No statically decided
access order
No general timing
characterization
Some can be abstracted
with limited retargetability
(Out-of-order issue queue)

IFArray
(I-Cache)

FIFO
(I-Buffer) ID

..
.

<I, IF>

[l, u]

<I, ID>

<I-n, ID>

..
.

<I+p, IF>

25-Jan-2007 12th ASP-DAC, Japan 16

Case Study: acesMIPS

A MIPS R4000-like processor
(by EXPRESSION group)

Retargeting effort: ~2 weeks
ADL-WCET component
mapping
Handcrafted code
Simulation, estimation, and
result analysis

One-time effort: ~2 months
WCET component library
execution graph construction
and WCET analysis
EXPRESSION-WCET interface

Benchmark Simulation Estimation Ratio

fdct 10310 12310 1.19

fft 2937925 3880257 1.32

isort 149057 175724 1.18

matmul 57431 72150 1.26

matsum 442556 482570 1.09Effort on writing acesMIPS ADL
description is not accounted

WCET ComponentADL
Component Input side Output side

WBUnit FIFO Array

FetchUnit Array FIFO

DecodeUnit FIFO FIFO

OpReadUnit Array/FIFO FIFO

25-Jan-2007 12th ASP-DAC, Japan 17

Related Work

A retargetable technique for predicting execution time of
code segments
Harmon, Baker, Whalley [Real-Time Systems, 1994]

Retargatable static software timing analysis
Chen, Malik, August [ISSS 2001]

Efficient analysis of pipeline models for WCET computation
Wilhelm [WCET Workshop, 2005]

25-Jan-2007 12th ASP-DAC, Japan 18

Related Work [RTS 1994]

Basic idea: micro-analysis
Instr => primitive operations
Timing analysis guided by pattern-driven timing rules

Pros
Primitive ops are architecture-independent

Cons
Timing rules are architecture-dependent
=> based on understanding of an architecture’s timing model
Based on simpler architectures
=> not powerful enough for modern processor

25-Jan-2007 12th ASP-DAC, Japan 19

Related Work [ISSS 2001]

Basic idea: MESCAL and MADL
MESCAL => compiler and simulator
Obtain WCET of a code fragment by simulation

Pros
Avoid most handcrafted code

Cons
Simulation does not guarantee WCET
For VLIW with restrictions on pipeline complexities

Comparison with our work
Retargetable simulation vs retargetable static analysis

25-Jan-2007 12th ASP-DAC, Japan 20

Related Work [WCET 2005]

Basic idea: HDL spec
Define pipeline analysis as computations on FSMs
With the help on Binary Decision Diagram (BDD)

Pros
Automated analysis

Cons
State explosion problem

Comparison with our work
Based on higher level of abstraction
A compact pipeline model based on execution graph

25-Jan-2007 12th ASP-DAC, Japan 21

Summary

The major barrier of WCET analysis is retargetability

Retargetable WCET analysis framework
Processor ADL specification as input
Execution graph based basic block timing analysis
WCET component library
ADL to execution graph

Case study (acesMIPS)

	A Retargetable Software Timing Analyzer �Using Architecture Description Language
	Timing Analysis
	Worst-Case Execution Time (WCET)
	Timing Analysis
	Microarchitecture Modeling
	WCET Analysis Framework
	Basic Block Timing Analysis (CB)
	Architecture Description Language (ADL)
	EXPRESSION ADL
	An Example ADL (acesMIPS)
	From ADL To Execution Graph
	WCET Component Library
	WCET Component Library (cont)
	WCET Component Library (cont)
	WCET Component Library (cont)
	Case Study: acesMIPS
	Related Work
	Related Work [RTS 1994]
	Related Work [ISSS 2001]
	Related Work [WCET 2005]
	Summary

