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Introduction
• Synthesized designs are often 

readjusted to achieve different 
goals. 
– Debugging
– Engineering Change
– Rewiring

• Logic transformation is required
– Restructures the design locally
– Minimizes modifications
– Preserves the previous 

engineering efforts

Example: Rewiring



Introduction
• Most logic transformation 

approaches use dictionary 
models.
– Predetermined
– Simple transformations

• Problem
– Not adequate for complex 

transformations
– Low hit ratio

• Algorithmic transformation 
(dynamic, non-predetermined) 
is desired

Circuits Hit ratio

C1908_s 27%

C2670_s 11%

C5315_s 25%

C3540_c 6%

C5315_c 16%

C7552_c 19%

→ SPFDs



Introduction
• SPFDs

– New representation of Boolean functions [Yamashita et al., 
ICCAD’96]

– Ideal for resynthesis. [Sinha, Brayton, IWLS’98]
– Works on a large input space → Memory/runtime intensive

• Contribution I:
– A simulation-based method to approximate SPFDs (aSPFD)
– Reduce the complexity of SPFDs

• Contribution II:
– Automate logic transformations using aSPFD
– Increase hit ratio up to 100%
– SAT-based and greedy approaches
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SPFDs
• Sets of Pairs of Functions to be 

Distinguished [Yamashita et al., ICCAD’96]
– Originally for applications to FPGAs

• An alternative way to express functional 
flexibility
– Good for resynthesis

• Can be presented as a graph [Sinha, Brayton
IWLS’98]



SPFDs
SPFD of a function, f
• Each minterm of f is a vertex
• An edge exists between (m1, m2) if f(m1) ≠ f(m2)
• A vertex with no edge is a don’t care
• Values of the vertexes are not specified

– Many functions can have the same SPFD
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Approximating SPFDs
• Previous methods 

– Formulate by BDDs or SAT
– Analyze the entire set of PI 

minterms
– Memory/runtime expensive

• Approximate SPFDs
(aSPFD)
– A subset of PI minterms
– Constructed by simulation 

vectors
– Less expensive to manipulate 

and compute
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Approximating SPFDs
• Which minterms should be picked?

• Logic rectification can be viewed in the 
debugging context [Smith et al., TCAD’05 ]
– error/correction operations
– Different errors require different sets of 

minterms

• Use simulation vectors to represent the 
behavior of the error
– Help to select important minterms



Approximating SPFDs

1. Simulate good / 
bad circuits 2. Collect Ve, Vc

3. Find 
on(Ve), on(Vc), 
off(Ve), off(Vc)

4. Add edges 
on(Vc) x on(Ve) 
off(Vc) x off(Ve)

Generate aSPFD of candidate, nerr

on(V)/off(V) 
returns vectors 
that nerr = 1/0



Approximating SPFDs
Example:
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On(Vc) = { 010, 101, 111 }
Off(Vc) = { 100 }

On(Ve) = { }
Off(Ve) = { 110 }

On(Vc) = { 010, 101, 111 }
Off(Vc) = { 100 }

On(Ve) = { }
Off(Ve) = { 110 }

On(Vc) = { 010, 101, 111 }
Off(Vc) = { 100 }

On(Ve) = { }
Off(Ve) = { 110 }

Vc = { 010, 100, 101, 111 }

Ve = { 110 }
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Automating Rectification
• Property: SPFD of a node must be the sub-graph of 

the union of SPFDs of its fan-ins
–

• The aSPFD contains edges not belong to the union
– Missing fan-ins

?

• Rectify the design by adding 
fan-ins
– Covering the extra edges
– Resynthesis the candidate 

[Cong et al.,  FPGA’02]
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Automating Rectification
Example:
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Automating Rectification
Two approaches for searching qualified wires

• SAT-based approach
– Variables:

• Represent wires in the design
– Covering Clauses:

• Generated for each edge
• Consist of wires that can cover the edge

– Blocking Clauses:
• Prevent selecting a wire when all of its fan-ins has been 

selected
– Returns the optimal solution
– NPC Problem: may run into the runtime issue



Automating Rectification

Two approaches for searching qualified wires

• Greedy approach
– Procedure: 

• Each time selecting the wire that can covering 
most edges 

• Repeat until all edges are covered
– The result may not be the optimal
– Runtime efficient
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Experiments
• Three types of errors

– Simple: single simple error
– Medium: combination of simple errors
– Complex: many errors in the fan-in cone

• The locations are provided by a fast linear-time 
diagnosis method.

• Pseudo-Boolean constraint SAT solver (MiniSat) is 
used to return the optimal solution [Eén, Sörensson, 
JSAT’06].



Experiments
circuit error 

loc.
Dict. 
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minterm

count

C3540_s 7.2 27.8% 86.1% 1.1
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C5315_s 6.4 25.0% 100.0% 1.9

C7552_s 11.8 19.2% 50.0% 1.7

C5315_m 9.6 2.2% 100.0% 2.9

C7552_m 8.8 9.1% 90.9% 1.9

C5315_c 6.4 16.1% 100% 2.7

C7552_c 20.6 19.1% 50% 1.9



Experiments
• # of selected new wires vs. complexity of errors
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Conclusion
• A simulation-based method to approximate SPFDs

– Avoids the memory explosion

• An algorithmic logic rectification using aSPFD
– Outperform methods with dictionary models
– SAT-based approach for the optimal solutions
– Greedy approach for runtime efficiency

• Future works
– Circuits required rectifications at multiple locations
– Sequential circuits



Thank you
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