
Automating Logic Rectification
by Approximate SPFDs

University of Toronto Synopsys Inc. UC Berkeley

Yu-Shen Yang
Andreas Veneris Subarna Sinha Robert K. Brayton

Outline

• Introduction
• SPFDs
• Approximating SPFDs
• Automating Rectification
• Experiments
• Conclusion

Introduction
• Synthesized designs are often

readjusted to achieve different
goals.
– Debugging
– Engineering Change
– Rewiring

• Logic transformation is required
– Restructures the design locally
– Minimizes modifications
– Preserves the previous

engineering efforts

Example: Rewiring

Introduction
• Most logic transformation

approaches use dictionary
models.
– Predetermined
– Simple transformations

• Problem
– Not adequate for complex

transformations
– Low hit ratio

• Algorithmic transformation
(dynamic, non-predetermined)
is desired

Circuits Hit ratio

C1908_s 27%

C2670_s 11%

C5315_s 25%

C3540_c 6%

C5315_c 16%

C7552_c 19%

→ SPFDs

Introduction
• SPFDs

– New representation of Boolean functions [Yamashita et al.,
ICCAD’96]

– Ideal for resynthesis. [Sinha, Brayton, IWLS’98]
– Works on a large input space → Memory/runtime intensive

• Contribution I:
– A simulation-based method to approximate SPFDs (aSPFD)
– Reduce the complexity of SPFDs

• Contribution II:
– Automate logic transformations using aSPFD
– Increase hit ratio up to 100%
– SAT-based and greedy approaches

Outline

• Introduction
• SPFDs
• Approximating SPFDs
• Automating Rectification
• Experiments
• Conclusion

SPFDs
• Sets of Pairs of Functions to be

Distinguished [Yamashita et al., ICCAD’96]
– Originally for applications to FPGAs

• An alternative way to express functional
flexibility
– Good for resynthesis

• Can be presented as a graph [Sinha, Brayton
IWLS’98]

SPFDs
SPFD of a function, f
• Each minterm of f is a vertex
• An edge exists between (m1, m2) if f(m1) ≠ f(m2)
• A vertex with no edge is a don’t care
• Values of the vertexes are not specified

– Many functions can have the same SPFD

000 001

010

011

100101

110

111

000
f1

000 0
010 1
110 0
111 1

f1 f2 f3 f4
000 0 0 1 1

0
0
1

010 1 1 0
110 0 1 1
111 1 0 0

Logic 0
Logic 1

Outline

• Introduction
• SPFDs
• Approximating SPFDs
• Automating Rectification
• Experiments
• Conclusion

Approximating SPFDs
• Previous methods

– Formulate by BDDs or SAT
– Analyze the entire set of PI

minterms
– Memory/runtime expensive

• Approximate SPFDs
(aSPFD)
– A subset of PI minterms
– Constructed by simulation

vectors
– Less expensive to manipulate

and compute

100101

000 001

010

011110

111

000 001

010

011

100101

110

111

Approximating SPFDs
• Which minterms should be picked?

• Logic rectification can be viewed in the
debugging context [Smith et al., TCAD’05]
– error/correction operations
– Different errors require different sets of

minterms

• Use simulation vectors to represent the
behavior of the error
– Help to select important minterms

Approximating SPFDs

1. Simulate good /
bad circuits 2. Collect Ve, Vc

3. Find
on(Ve), on(Vc),
off(Ve), off(Vc)

4. Add edges
on(Vc) x on(Ve)
off(Vc) x off(Ve)

Generate aSPFD of candidate, nerr

on(V)/off(V)
returns vectors
that nerr = 1/0

Approximating SPFDs
Example:

000 001

010

011

100101

110

111

aSPFDz

d z

f

a
b

c

e

Goal: remove e z

a b c z zerror
0 1 0 1 1

0
1
0
1

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a b c z
0 1 0 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

zerror

On(Vc) = { 010, 101, 111 }
Off(Vc) = { 100 }

On(Ve) = { }
Off(Ve) = { 110 }

On(Vc) = { 010, 101, 111 }
Off(Vc) = { 100 }

On(Ve) = { }
Off(Ve) = { 110 }

On(Vc) = { 010, 101, 111 }
Off(Vc) = { 100 }

On(Ve) = { }
Off(Ve) = { 110 }

Vc = { 010, 100, 101, 111 }

Ve = { 110 }

Outline

• Introduction
• SPFDs
• Approximating SPFDs
• Automating Rectification
• Experiments
• Conclusion

Automating Rectification
• Property: SPFD of a node must be the sub-graph of

the union of SPFDs of its fan-ins
–

• The aSPFD contains edges not belong to the union
– Missing fan-ins

?

• Rectify the design by adding
fan-ins
– Covering the extra edges
– Resynthesis the candidate

[Cong et al., FPGA’02]

na
b

a
b

ban SPFDSPFDSPFD U⊆

Cong
et al.

This work

Automating Rectification
Example:

000 001

010

011

100101

110

111

aSPFDz

d z

f

a
b

c

e

a b c z zerror
0 1 0 1 1

0
1
0
1

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

zerror

000 001

010

011

100101

110

111

aSPFDb

Goal: remove e z

Automating Rectification
Two approaches for searching qualified wires

• SAT-based approach
– Variables:

• Represent wires in the design
– Covering Clauses:

• Generated for each edge
• Consist of wires that can cover the edge

– Blocking Clauses:
• Prevent selecting a wire when all of its fan-ins has been

selected
– Returns the optimal solution
– NPC Problem: may run into the runtime issue

Automating Rectification

Two approaches for searching qualified wires

• Greedy approach
– Procedure:

• Each time selecting the wire that can covering
most edges

• Repeat until all edges are covered
– The result may not be the optimal
– Runtime efficient

Outline

• Introduction
• SPFDs
• Approximating SPFDs
• Automating Rectification
• Experiments
• Conclusion

Experiments
• Three types of errors

– Simple: single simple error
– Medium: combination of simple errors
– Complex: many errors in the fan-in cone

• The locations are provided by a fast linear-time
diagnosis method.

• Pseudo-Boolean constraint SAT solver (MiniSat) is
used to return the optimal solution [Eén, Sörensson,
JSAT’06].

Experiments
circuit error

loc.
Dict.

model
aSPFD Min #

wires
of

wires
minterm

count

C3540_s 7.2 27.8% 86.1% 1.1

-

-

1.6

-

-

3.4

-

-

1.1 3.7

C3540_m 3.2 25.0% 100.0% 1.6 4.1

C3540_c 3.0 6.7% 66.7% 3.6 6.1

5.9

4.9

7.4

6.3

8.4

5.2

C5315_s 6.4 25.0% 100.0% 1.9

C7552_s 11.8 19.2% 50.0% 1.7

C5315_m 9.6 2.2% 100.0% 2.9

C7552_m 8.8 9.1% 90.9% 1.9

C5315_c 6.4 16.1% 100% 2.7

C7552_c 20.6 19.1% 50% 1.9

Experiments
• # of selected new wires vs. complexity of errors

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Simple Medium Complex
complexity of errors

of

 s
el

ec
te

d
ne

w
 w

ire
s

(n

or
m

al
iz

ed
 %

) 0 wire
1 wire
2 wires
3 wires
4 wires

Outline

• Introduction
• SPFDs
• Approximating SPFDs
• Automating Rectification
• Experiments
• Conclusion

Conclusion
• A simulation-based method to approximate SPFDs

– Avoids the memory explosion

• An algorithmic logic rectification using aSPFD
– Outperform methods with dictionary models
– SAT-based approach for the optimal solutions
– Greedy approach for runtime efficiency

• Future works
– Circuits required rectifications at multiple locations
– Sequential circuits

Thank you

	Automating Logic Rectification by Approximate SPFDs
	Outline
	Introduction
	Introduction
	Introduction
	Outline
	SPFDs
	SPFDs
	Outline
	Approximating SPFDs
	Approximating SPFDs
	Approximating SPFDs
	Approximating SPFDs
	Outline
	Automating Rectification
	Automating Rectification
	Automating Rectification
	Automating Rectification
	Outline
	Experiments
	Experiments
	Experiments
	Outline
	Conclusion
	Thank you

