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Wire delays dominate critical paths 
(130nm,90,65,…)
Tech. mapping, place-and-route 
are key to delay estimation

Dynamic power, leakage
Technology (nm)

Motivation & Context
ITRS 2005 – Delay Trends
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Impact on Design Techniques

Physically-aware synthesis
Minimize impact on placement
Cannot assume simple unmapped netlists, 
e.g., AND/NOT/OR circuits
Avoid costly netlist conversions

Aggressive optimization required
Find optimizations post-synthesis
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Optimization with Node Mergers

Merge equivalent nodes
Area reduction
Eq. checking applications
Scalable w/SAT & simulation
Exploits satisfiable/controllable 
don’t cares

Consider downstream logic
Exploits observability don’t-cares (ODCs)
Find more mergers

A B

A = B? ?
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Node Mergers with 
Global Don’t Cares

We implement an aggressive synthesis strategy
Perform node mergers in the presence 
of satisfiable/observability don’t cares

Not restricted to local don’t cares [Zhu et al. DAC ’06]
Focus on post-synthesis optimizations

Fast Global
ODC

Analysis

Mapped
Netlist

Our Global Node Merging Framework

Incremental
Verification

Node Merging Candidates

Signature Refinement

Optimized 
Mapped
Netlist
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Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions
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Signatures and Bit Simulation

Signature: partial truth table associated 
with each node in a circuit
Stimulate inputs with random simulation vectors
Generate signatures through
bit-parallel simulation
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Finding Node Equivalence 
with Simulation

Identify potential equivalence with signatures
Verify with SAT—refine simulation if not equivalent
Applications in verification, And-Inverter Graphs (AIGs) 
[Kuehlmann et al. ’02, Mishchenko et al. ’06]
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Satisfiable Don’t Cares

Input patterns that cannot happen
Handled implicitly by simulation

F(x(a,b,c),y(a,b,c)) ≡ F(x,y) – SDC(x,y)

a

b

c

F

x

y

No simulation vector for a,b,c generates x = 1, y = 0
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Finding Observability Don’t Cares

Internal value does not affect outputs 
(limited observability)
Not accounted for by traditional simulation

ODC-signature: ODC(F(a=0,b=0,x1,x2,x3)) = 1

a

F

F is a don’t-care when a=0, b=0

b

x1
x2
x3
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Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions
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100

Deriving Global ODCs

Compute ODC signature for each node
Naïve algorithm: O(n) for one node

O(n2) for circuit
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Find ODCs for this node for the 3 input vectors

1. Invert node’s signature

2. Propagate differences

111

001
100

3. ODC for a given
simulation vector 
where no difference
occurs at any output

ODC for this node’s last simulation vector
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Fast Approximate ODC Analysis

Linear traversal from POs to PIs
Exact without reconvergence

Less scalable per node computation [Zhu et al. DAC ’06]

Algorithm
1. Examine each of target’s FO 

2. Union ODC(FO) with 
local ODC for each FO

3. Intersect ODCs for each FO

TARGET

A
ODC(A) = {1…}

B

C

ODC(B) = {0…}

ODC(C) = {0…}

{0…}

{1…}

{0…}

{0…}

{0…}

{1…}
{1…}

ODC(Target) = {1…}

ODC(Target) = {0…}

ODC(Target) = {1…}

ODC(Target) = {0…}
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False Positive and Negatives

Incorrect simulation due to reconvergence
Happens infrequently
Verified with SAT

0
1

1

1

False positive = adding false ODCs False negative = removing actual ODCs

0
1

1

0
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Identify Merger Candidates

Find candidate for later verification
Use ODCs and signatures of each node
G is a candidate to replace F i.f.f.

{Sig(F) – ODC(F)} ≤ Sig(G) ≤ {Sig(F) + ODC(F)}
i.e.,  node G is bounded by function interval of F
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Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions
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Proving Node Mergers up to ODCs

Verify mergers indicated by simulation
Use counter-examples to refine simulation
[Zhu et al. DAC ’06, Mishchenko et al. ’06]
Naïve approach

Merge node in netlist
Perform equivalence check over primary outputs

a
b
c

Miter

merger performed

a
b
c
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Dominator Algorithm
Not all downstream logic is necessary 
to validate a merger
Our approach: 

Choose a set of dominating nodes from the 
merger site that form a cut through the circuit
Place miters along the cut
Run SAT and refine cut as necessary

a
b
c

a
b
c

a
b
c

a
b
c

Not equivalent—
refine cut from
counter-example
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Finding Dominators

When merging node G onto F
Simulate a subset of the differences between Sig(G) and Sig(F)
Find downstream nodes of F where differences disappear

Similar to finding the D-Frontier in the ATPG domain
Simulate counter-examples from SAT to extend the cut
Stopping conditions:

The solver returns UNSAT—can merge
The solver returns SAT and the simulated differences 
reach a primary output—can’t merge
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Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous research
Experiments and conclusions
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Exploiting Don’t-Cares
Previous: primarily local analysis
Global SDCs through simulation [Goldberg et al. ’01, 
Kuehlmann et al. ’02, Mishchenko et al. ’06]
Small windows to exploit local SDCs and ODCs
[Mishchenko et al. ’05]
Simulation+SAT to exploit global SDCs and local ODCs
[Zhu et al. DAC ’06]

Local ODCs approximated by considering <6 levels of logic
Ours: Fast approximate simulation and incremental verification
to exploit global SDCs and ODCs

Target Node
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Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions
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Experimental Setup

IWLS ’05 OpenCore benchmarks
Synthesis tool used

Local rewriting (Berkeley’s ABC package)
Simple mapping of 2-input gates

Combinational sections of circuits considered
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Pre/Post-Synthesis Optimization
Before Synthesis After Local Synthesis

Circuit #gates #mergers %gate
reduction

#gates

1898 1055
1058
2655

3342
8279

10093

13178
15514
21957

2149
4419

6440
14130
17488

24856
28432
30875

#mergers %area
reduction

i2c 245 13.4% 30 3.2%
pci_spoci 446 23.1% 97 9.2%
systemcdes 812 18.9% 111 4.7%

spi 1091 17.3% 23 1.3%
tv80 2464 18.2% 606 7.1%
systemcaes 3532 21.0% 518 3.8%

ac97_ctrl 3124 12.6% 185 2.0%
usb_funct 4141 15.0% 186 1.4%
aes_core 5729 19.0% 2144 9.2%

average 17.6% 4.7%
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Local vs. Global Simulation 
(Runtime Comparison)

OA Gear implementation of [Zhu et. al]—
levels of downstream logic consideredCircuit

(unoptimized)
2 4 8 16 32

Our global 
algorithm
(OA Gear)

i2c 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s

pci_spoci 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s

systemcdes 0.3s 0.3s 0.3s 0.5s 0.6s 0.3s

spi 0.4s 0.5s 0.5s 1.8s 11.2s 0.4s

tv80 2.2s 2.3s 2.6s 8.2s 363.0s 2.2s

systemcaes 2.3s 2.4s 2.6s 11.9s 1300.0s 2.3s

ac97_ctrl 1.0s 1.0s 1.0s 1.0s 1.0s 1.0s

usb_funct 2.2s 2.3s 2.4s 2.8s 3.3s 2.2s

aes_core 3.0s 3.1s 3.4s 6.3s 7.9s 3.0s
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Global vs. Local 
Merger Candidates

Local merging (5 levels) 
vs. global merging

Circuit %extra global 
mergers

24.7%
11.7%

0.5%
62.6%
75.8%
98.3%
72.7%
96.9%

aes_core 89.2%

average 59.2%

i2c
pci_spoci
systemcdes
spi
tv80
systemcaes
ac97_ctrl
usb_funct

Each node can have 
multiple merger candidates 
More candidates=
more flexibility/choices

Physical optimizations
Timing optimizations
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Conclusions

Optimization before and after 
aggressive local synthesis
Fast simulation and SAT = scalable global analysis
Global analysis = more merger candidates
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