
Node Mergers in the
Presence of Don’t Cares

Stephen M. Plaza, Kai-hui Chang,
Igor L. Markov, and Valeria Bertacco

Univ. of Michigan, EECS

2/27

Wire delays dominate critical paths
(130nm,90,65,…)
Tech. mapping, place-and-route
are key to delay estimation

Dynamic power, leakage
Technology (nm)

Motivation & Context
ITRS 2005 – Delay Trends

Relatively small gate delay
R

el
at

iv
e

D
el

ay
250 180 130 90 65 45 32

0.1

1

10

100 Gate Delay (fanout of 4)

Local (scaled)

Global with Repeaters

Global w/o Repeaters

3/27

Impact on Design Techniques

Physically-aware synthesis
Minimize impact on placement
Cannot assume simple unmapped netlists,
e.g., AND/NOT/OR circuits
Avoid costly netlist conversions

Aggressive optimization required
Find optimizations post-synthesis

4/27

Optimization with Node Mergers

Merge equivalent nodes
Area reduction
Eq. checking applications
Scalable w/SAT & simulation
Exploits satisfiable/controllable
don’t cares

Consider downstream logic
Exploits observability don’t-cares (ODCs)
Find more mergers

A B

A = B? ?

5/27

Node Mergers with
Global Don’t Cares

We implement an aggressive synthesis strategy
Perform node mergers in the presence
of satisfiable/observability don’t cares

Not restricted to local don’t cares [Zhu et al. DAC ’06]
Focus on post-synthesis optimizations

Fast Global
ODC

Analysis

Mapped
Netlist

Our Global Node Merging Framework

Incremental
Verification

Node Merging Candidates

Signature Refinement

Optimized
Mapped
Netlist

6/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

7/27

Signatures and Bit Simulation

Signature: partial truth table associated
with each node in a circuit
Stimulate inputs with random simulation vectors
Generate signatures through
bit-parallel simulation

I2

I3

111

011

I4

111 O2

I1
0103 random simulation for 4 inputs

O1

011
011

011Generate signatures Sig(O1) = {011}

8/27

Finding Node Equivalence
with Simulation

Identify potential equivalence with signatures
Verify with SAT—refine simulation if not equivalent
Applications in verification, And-Inverter Graphs (AIGs)
[Kuehlmann et al. ’02, Mishchenko et al. ’06]

I2

I3

111

011

I4

111 O2

I1
010

011

O1

011

011

Sig(O1) = Sig(O2)

Assert(1)

SAT = not equiv
UNSAT = equiv

9/27

Satisfiable Don’t Cares

Input patterns that cannot happen
Handled implicitly by simulation

F(x(a,b,c),y(a,b,c)) ≡ F(x,y) – SDC(x,y)

a

b

c

F

x

y

No simulation vector for a,b,c generates x = 1, y = 0

10/27

Finding Observability Don’t Cares

Internal value does not affect outputs
(limited observability)
Not accounted for by traditional simulation

ODC-signature: ODC(F(a=0,b=0,x1,x2,x3)) = 1

a

F

F is a don’t-care when a=0, b=0

b

x1
x2
x3

11/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

12/27

100

Deriving Global ODCs

Compute ODC signature for each node
Naïve algorithm: O(n) for one node

O(n2) for circuit

I2

I3

111

011

I4

110 O2

I1
011

011

O1

010

011

Find ODCs for this node for the 3 input vectors

1. Invert node’s signature

2. Propagate differences

111

001
100

3. ODC for a given
simulation vector
where no difference
occurs at any output

ODC for this node’s last simulation vector

13/27

Fast Approximate ODC Analysis

Linear traversal from POs to PIs
Exact without reconvergence

Less scalable per node computation [Zhu et al. DAC ’06]

Algorithm
1. Examine each of target’s FO

2. Union ODC(FO) with
local ODC for each FO

3. Intersect ODCs for each FO

TARGET

A
ODC(A) = {1…}

B

C

ODC(B) = {0…}

ODC(C) = {0…}

{0…}

{1…}

{0…}

{0…}

{0…}

{1…}
{1…}

ODC(Target) = {1…}

ODC(Target) = {0…}

ODC(Target) = {1…}

ODC(Target) = {0…}

14/27

False Positive and Negatives

Incorrect simulation due to reconvergence
Happens infrequently
Verified with SAT

0
1

1

1

False positive = adding false ODCs False negative = removing actual ODCs

0
1

1

0

15/27

Identify Merger Candidates

Find candidate for later verification
Use ODCs and signatures of each node
G is a candidate to replace F i.f.f.

{Sig(F) – ODC(F)} ≤ Sig(G) ≤ {Sig(F) + ODC(F)}
i.e., node G is bounded by function interval of F

16/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

17/27

Proving Node Mergers up to ODCs

Verify mergers indicated by simulation
Use counter-examples to refine simulation
[Zhu et al. DAC ’06, Mishchenko et al. ’06]
Naïve approach

Merge node in netlist
Perform equivalence check over primary outputs

a
b
c

Miter

merger performed

a
b
c

18/27

Dominator Algorithm
Not all downstream logic is necessary
to validate a merger
Our approach:

Choose a set of dominating nodes from the
merger site that form a cut through the circuit
Place miters along the cut
Run SAT and refine cut as necessary

a
b
c

a
b
c

a
b
c

a
b
c

Not equivalent—
refine cut from
counter-example

19/27

Finding Dominators

When merging node G onto F
Simulate a subset of the differences between Sig(G) and Sig(F)
Find downstream nodes of F where differences disappear

Similar to finding the D-Frontier in the ATPG domain
Simulate counter-examples from SAT to extend the cut
Stopping conditions:

The solver returns UNSAT—can merge
The solver returns SAT and the simulated differences
reach a primary output—can’t merge

20/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous research
Experiments and conclusions

21/27

Exploiting Don’t-Cares
Previous: primarily local analysis
Global SDCs through simulation [Goldberg et al. ’01,
Kuehlmann et al. ’02, Mishchenko et al. ’06]
Small windows to exploit local SDCs and ODCs
[Mishchenko et al. ’05]
Simulation+SAT to exploit global SDCs and local ODCs
[Zhu et al. DAC ’06]

Local ODCs approximated by considering <6 levels of logic
Ours: Fast approximate simulation and incremental verification
to exploit global SDCs and ODCs

Target Node

22/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

23/27

Experimental Setup

IWLS ’05 OpenCore benchmarks
Synthesis tool used

Local rewriting (Berkeley’s ABC package)
Simple mapping of 2-input gates

Combinational sections of circuits considered

24/27

Pre/Post-Synthesis Optimization
Before Synthesis After Local Synthesis

Circuit #gates #mergers %gate
reduction

#gates

1898 1055
1058
2655

3342
8279

10093

13178
15514
21957

2149
4419

6440
14130
17488

24856
28432
30875

#mergers %area
reduction

i2c 245 13.4% 30 3.2%
pci_spoci 446 23.1% 97 9.2%
systemcdes 812 18.9% 111 4.7%

spi 1091 17.3% 23 1.3%
tv80 2464 18.2% 606 7.1%
systemcaes 3532 21.0% 518 3.8%

ac97_ctrl 3124 12.6% 185 2.0%
usb_funct 4141 15.0% 186 1.4%
aes_core 5729 19.0% 2144 9.2%

average 17.6% 4.7%

25/27

Local vs. Global Simulation
(Runtime Comparison)

OA Gear implementation of [Zhu et. al]—
levels of downstream logic consideredCircuit

(unoptimized)
2 4 8 16 32

Our global
algorithm
(OA Gear)

i2c 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s

pci_spoci 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s

systemcdes 0.3s 0.3s 0.3s 0.5s 0.6s 0.3s

spi 0.4s 0.5s 0.5s 1.8s 11.2s 0.4s

tv80 2.2s 2.3s 2.6s 8.2s 363.0s 2.2s

systemcaes 2.3s 2.4s 2.6s 11.9s 1300.0s 2.3s

ac97_ctrl 1.0s 1.0s 1.0s 1.0s 1.0s 1.0s

usb_funct 2.2s 2.3s 2.4s 2.8s 3.3s 2.2s

aes_core 3.0s 3.1s 3.4s 6.3s 7.9s 3.0s

26/27

Global vs. Local
Merger Candidates

Local merging (5 levels)
vs. global merging

Circuit %extra global
mergers

24.7%
11.7%

0.5%
62.6%
75.8%
98.3%
72.7%
96.9%

aes_core 89.2%

average 59.2%

i2c
pci_spoci
systemcdes
spi
tv80
systemcaes
ac97_ctrl
usb_funct

Each node can have
multiple merger candidates
More candidates=
more flexibility/choices

Physical optimizations
Timing optimizations

27/27

Conclusions

Optimization before and after
aggressive local synthesis
Fast simulation and SAT = scalable global analysis
Global analysis = more merger candidates

	Node Mergers in the Presence of Don’t Cares
	Motivation & Context
	Impact on Design Techniques
	Optimization with Node Mergers
	Node Mergers with �Global Don’t Cares
	Outline
	Signatures and Bit Simulation
	Finding Node Equivalence �with Simulation
	Satisfiable Don’t Cares
	Finding Observability Don’t Cares
	Outline
	Deriving Global ODCs
	Fast Approximate ODC Analysis
	False Positive and Negatives
	Identify Merger Candidates
	Outline
	Proving Node Mergers up to ODCs
	Dominator Algorithm
	Finding Dominators
	Outline
	Exploiting Don’t-Cares
	Outline
	Experimental Setup
	Pre/Post-Synthesis Optimization
	Local vs. Global Simulation (Runtime Comparison)
	Global vs. Local �Merger Candidates
	Conclusions

