Recognition of Fanout-free Functions

Speaker: Yi-Ling Liou Author: Tsung-Lin Lee Chun-Yao Wang

Dept. of Computer Science National Tsing Hua University, Taiwan

- Introduction
- Background
- Our Improvements
- Experimental Results
- Conclusions

Introduction

A Boolean function is called a fanout-free function if it has a form in which each variable appears exactly once

 $f_7 = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5 + x_4 x_6 + x_5 x_6$ = $(x_1 x_2 x_3 + x_6)(x_4 + x_5)$

Introduction (cont'd)

Fanout-free function is a tree-like structure

Technology mapping algorithm, DAGON

Testability evaluation

Introduction (cont'd)

 J. P. Hayes proposed an algorithm to recognize fanout-free functions

We propose some efficient ways to accelerate the algorithm

- Introduction
- Background
- Our Improvements
- Experimental Results
- Conclusions

Unate

Definition : f(X) is positive unate in $x_i \in X$ if $f(x_i = 1) = 1$ whenever $f(x_i = 0) = 1$; f(X) is negative unate in $x_i \in X$ if $f(x_i = 0) = 1$ whenever $f(x_i = 1) = 1$

 x_1 is positive unate; x_2 is negative unate

Unate Function

Definition: f(X) is a unate function if all variables are unate

A unate function could be a fanout-free function

Fanout-free Function

fanout-free → unate
f=x₁x₂+x₁x₃=x₁(x₂+x₃)
unate × fanout-free
f=x₁x₂+x₂x₃+x₃x₁

Unate	
Fanout-free	

Preliminary

We discuss unate functions only
 Not unate → Not fanout-free

- Without loss of generality, we assume variables are positive unate
 - $F(x_1, x_2) = x_1 + x'_2$ • $G(x_1, x'_2) = x_1 + x_2$

Disjunctive Decomposition

- Simple disjunctive decomposition extracts a single-output subfunction
- Input variable set is disjunctive from the others

Adjacency Relation

Definition:

x_i ≠ x_j, x_i is adjacent to x_j if f(x_i=a) = f(x_j=a) for some constant
 a. It is denoted by =_a

 $f_{7}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}) = x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{5} + x_{4}x_{6} + x_{5}x_{6}$

$$\begin{array}{ll} f_7(x_1=0)=x_4x_6+x_5x_6 & f_7(x_1=1)=x_2x_3x_4+x_2x_3x_5+x_4x_6+x_5x_6 & f_7(x_2=0)=x_4x_6+x_5x_6 & f_7(x_2=1)=x_1x_3x_4+x_1x_3x_5+x_4x_6+x_5x_6 & f_7(x_3=0)=x_4x_6+x_5x_6 & f_7(x_3=1)=x_1x_2x_4+x_1x_2x_5+x_4x_6+x_5x_6 & f_7(x_3=1)=x_1x_2x_3+x_6 & f_7(x_4=1)=x_1x_2x_3+x_6 & f_7(x_5=0)=x_1x_2x_3x_4+x_4x_6 & f_7(x_5=1)=x_1x_2x_3+x_6 & f_7(x_5=1)=x_1x_2x_3x_4+x_1x_2x_3x_5+x_4+x_5 & f_7(x_6=1)=x_1x_2x_3x_4+x_1x_2x_3x_5+x_4+x_5 & f_7(x_6=1)=x_1x_2x_3x_4+x_1x_2x_5+x_4+x_5 & f_7(x_6=1) &$$

 X_6

Adjacency Relation (cont'd)

Adjacency is reflexive, symmetric, and transitive
 Reflexive: x_i =_a x_i
 Symmetric: x_i =_a x_j → x_j =_a x_j

• Transitive: $x_i = x_i$ and $x_j = x_k \rightarrow x_i = x_k$

Adjacency is an equivalence relation
 E.R. can partition elements into disjoint sets

(Math: Adjacency Relation is irreflexive and symmetric)

Adjacency and Decomposition

Let the variables of g(X) be partitioned into blocks by AR

 $g(X) = g(\varphi_1(X_1), \varphi_2(X_2), \cdots, \varphi_m(X_m)),$ $X_i \cap X_j = \phi \qquad \forall i \neq j,$ $X_1 \cup X_2 \cup \cdots \cup X_m = X$

Adjacency and Decomposition (cont'd)

These are elementary gates (AND or OR)
A corresponding elementary function is composed of a subset of variables

Adjacency and Decomposition (cont'd)

 $=_{0}: \text{AND gate}$ $=_{1}: \text{OR gate}$ $f_{7}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}) = x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{5} + x_{4}x_{6} + x_{5}x_{6}$

$X_1 =_0 X_2 =_0 X_3$	$: \varphi_1 = X_1 X_2 X_3$
$x_4 =_1 x_5$: $\varphi_2 = X_4 + X_5$
<i>X</i> ₆	: $\varphi_3 = X_6$

 $f_7(\boldsymbol{X}_1, \boldsymbol{X}_2, \boldsymbol{X}_3, \boldsymbol{X}_4, \boldsymbol{X}_5, \boldsymbol{X}_6) = F(\varphi_1, \varphi_2, \varphi_3)$

1. Examining the Adjacency Relation (EAR)

2. Constructing the New Network (CNN)

The Procedure of J. P. Hayes Algorithm

Example

 $f_7(X) = f_7(X_1, X_2, X_3, X_4, X_5, X_6) = X_1 X_2 X_3 X_4 + X_1 X_2 X_3 X_5 + X_4 X_6 + X_5 X_6$

 f_7 is a unate function

$$\begin{array}{l} f_7(x_1 = 0) = x_4 x_6 + x_5 x_6 \\ f_7(x_2 = 0) = x_4 x_6 + x_5 x_6 \\ f_7(x_3 = 0) = x_4 x_6 + x_5 x_6 \\ f_7(x_4 = 0) = x_1 x_2 x_3 x_5 + x_5 x_6 \\ f_7(x_5 = 0) = x_1 x_2 x_3 x_4 + x_4 x_6 \\ f_7(x_6 = 0) = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5 \\ \end{array}$$

Thus *X* is partitioned into three blocks:

 $X_1 = \{x_1, x_2, x_3\} \qquad X_2 = \{x_4, x_5\} \qquad X_3 = \{x_6\}$

Example (cont'd)

Example (cont'd)

 $\varphi_1 = X_1 X_2 X_3, \ \varphi_2 = X_4 + X_5, \ \varphi_3 = X_6$ Thus $f_7(X) = f_{7,1}(\varphi_1, \varphi_2, \varphi_3)$ $f_7(X) = X_1 X_2 X_3 X_4 + X_1 X_2 X_3 X_5 + X_4 X_6 + X_5 X_6$ $\varphi_2 \quad \varphi_3 \quad f_{7.1}$ $\varphi_2 \quad \varphi_3 \mid f_{7,1}$ φ_1 φ_1 0 0 0 0 0 1 $\left(\right)$ 1 1

 $f_{7.1}(\varphi_1,\varphi_2,\varphi_3) = \overline{\varphi_1}\varphi_2\varphi_3 + \varphi_1\varphi_2\overline{\varphi_3} + \varphi_1\varphi_2\varphi_3$ $= \varphi_1\varphi_2 + \varphi_2\varphi_3$

Example (cont'd)

Constructing the New Network

Outline

Introduction

Background Materials

Our Improvements

Experimental Results

Conclusions

Bottlenecks

Examining the Adjacency Relation About n² E.C. should be done (O(n² 2ⁿ))

Constructing the New Network
 Time complexity is O(2^m)

Do EAR without E.C. Do CNN in O(1)

Disappearance Property

■ Adjacency → Disappearance

$$x_{i} =_{a} x_{j} \Leftrightarrow f(x_{i} = a) = f(x_{j} = a)$$

$$\Rightarrow \frac{1. x_{i} \text{ is disappeared in } f(x_{j} = a)}{2. x_{i} \text{ is disappeared in } f(x_{i} = a)}$$

Example:

 $f_7 = x_1 x_2 \overline{x_3 x_4} + x_1 \overline{x_2 x_3 x_5} + x_4 \overline{x_6} + \overline{x_5 x_6}$ $f_7 (x_4 = 1) = x_1 \overline{x_2 x_3} + \overline{x_6} = f_7 (x_5 = 1)$

Disappearance Property (cont'd)

Disappearance \rightarrow Adjacency

 x_i is disappeared in $f(x_j = a)$ and x_j is disappeared in $f(x_i = a)$ $\Rightarrow f(x_i = a) = f(x_j = a) \Leftrightarrow x_i = x_j$

Corollary

Adjacency \Leftrightarrow Disappearance Disappearance property also holds in multiple variables Adjacency is transitive $\mathbf{x}_i = \mathbf{x}_i$ and $\mathbf{x}_i = \mathbf{x}_k$ $\rightarrow X_i \equiv_a X_k$ \rightarrow x_k disappears in f(x_i=a) x_i disappears in $f(x_k=a)$

Effect of Disappearance Property

Adjacency \Leftrightarrow Disappearance

Examine the Adjacency Relation by checking appearances of variables

Construct the New Network by substituting variables

Improvement on EAR

 $f_7(X) = \overline{f_7(X_1, X_2, X_3, X_4, X_5, X_6)} = X_1 X_2 X_3 X_4 + X_1 X_2 X_3 X_5 + X_4 X_6 + X_5 X_6$

$f_7(0_1) = x_4 x_6 + x_5 x_6$	$f_7(1_1) = x_2 x_3 x_4 + x_2 x_3 x_5 + x_4 x_6 + x_5 x_6$
$f_7(0_2) = x_4 x_6 + x_5 x_6$	$f_7(1_2) = x_1 x_3 x_4 + x_1 x_3 x_5 + x_4 x_6 + x_5 x_6$
$f_7(0_3) = x_4 x_6 + x_5 x_6$	$f_7(1_3) = x_1 x_2 x_4 + x_1 x_2 x_5 + x_4 x_6 + x_5 x_6$
$f_7(0_4) = x_1 x_2 x_3 x_5 + x_5 x_6$	$f_7(1_4) = x_1 x_2 x_3 + x_6$
$f_7(0_5) = x_1 x_2 x_3 x_4 + x_4 x_6$	$f_7(1_5) = x_1 x_2 x_3 + x_6$
$f_7(0_6) = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5$	$f_7(1_6) = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5 + x_4 + x_5$

	<i>X</i> ₁	X ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	X 6		- X ₁	X ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	X ₆
$f_{7}(0_{1})$	0	0	0	1	1	1	$f_{7}(1_{1})$	0	1	1	1	1	1
$f_7(0_2)$	0	0	0	1	1	1	$f_{7}(1_{2})$	1	0	1	1	1	1
$f_{7}(0_{3})$	0	0	0	1	1	1	$f_{7}(1_{3})$	1	1	0	1	1	1
$f_{7}(0_{4})$	1	1	1	0	1	1	$f_{7}(1_{4})$	1	1	1	0	0	1
$f_{7}(0_{5})$	1	1	1	1	0	1	$f_{7}(1_{5})$	1	1	1	0	0	1
$f_{7}(0_{6})$	1	1	1	1	1	0	$f_{7}(1_{6})$	1	1	1	1	1	0

Improvement on EAR (cont'd)

 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6$ $\longrightarrow f_7(0_1)$ 0 0 1 1 1 $\rightarrow f_7(0_2)$ 0 0 1 1 1 - $f_7(0_3)$ 0 0 0 1 1 1 $f_7(0_4)$ 1 1 1 8 1 1 1 $f_7(0_5)$ 1 1 1 0 1 $f_7(0_6)$ 1 1 1 1 0 Checking whether $x_2 = x_3$ is unnecessary $X_1 = X_2 = X_3$

Improvement on CNN

In the process of proving "Disappearance Property", we found

1. If
$$x_1 =_0 x_2 =_0 \dots =_0 x_r$$
 $(\varphi = x_1 x_2 \dots x_r)$
 $\Rightarrow f(x_1, x_2, \dots, x_r, A, Z) = x_1 x_2 \dots x_r A + Z$
 $\Rightarrow f(x_1 = \varphi, x_2 = 1, \dots, x_r = 1, A, Z) = \varphi 1 \dots 1A + Z$

2. If $x_1 = x_2 = \cdots = x_r$ $(\varphi = x_1 + x_2 + \cdots + x_r)$ $\Rightarrow f(x_1, x_2, \cdots, x_r, A, Z) = (x_1 + x_2 + \cdots + x_r)A + Z$ $\Rightarrow f(x_1 = \varphi, x_2 = 0, \cdots, x_r = 0, A, Z) = (\varphi + 0 + \cdots + 0)A + Z$

Improvement on CNN

- $f_{7}(X) = X_{1}X_{2}X_{3}X_{4} + X_{1}X_{2}X_{3}X_{5} + X_{4}X_{6} + X_{5}X_{6}$ $X_{1} =_{0} X_{2} =_{0} X_{3}, \quad X_{4} =_{1} X_{5}$ $\varphi_{1} = X_{1}X_{2}X_{3}, \quad \varphi_{2} = X_{4} + X_{5}, \quad \varphi_{3} = X_{6}$
- $f_{7.1}(\varphi_1, \varphi_2, \varphi_3)$ = $f_7(x_1 = \varphi_1, x_2 = 1, x_3 = 1, x_4 = \varphi_2, x_5 = 0, x_6 = \varphi_3)$ = $\varphi_1 1 1 \varphi_2 + \varphi_1 1 10 + \varphi_2 \varphi_3 + 0 \varphi_3$ = $\varphi_1 \varphi_2 + \varphi_2 \varphi_3$

We only need constant time!

- Introduction
- Background
- Our Improvements
- Experimental Results
- Conclusions

Experimental Results

 Implement our algorithm and re-implement JPH proposed in [4]
 Sun Blade 2500 machine

IROF was proposed in 3

All three algorithms recognize identical fanout-free functions

Experimental Results (cont'd)

	lit(SOP)	#Vars	JPH <u>[4]</u>	IROF [3]	Ours
L2_B10	10240	20	4	0.30	0.11
L4_B3	3072	24	6	0.10	80.0
L4_B6	7290	24	277	0.21	0.18
L6_B4	672	20	3	0.02	0.02
L6_B8A	132	52	>1hr	0.02	0.29
L6_B8B	24192	52	>1hr	0.74	2.08
L8_B5	3380	29	>1hr	0.09	0.11
L10_B3	2160	30	>1hr	0.07	0.16
L14_B3	6720	42	>1hr	0.20	0,52

- Introduction
- Background
- Our Improvements
- Experimental Results
- Conclusions

Conclusions

 Disappearance property accelerates the J.
 P. Hayes' procedure of recognizing fanoutfree functions

Our method also produces a partially fanout-free function on recognizing a fanout function, while IROF gets nothing

Thank you !!