Advanced Tools for Simulation and Design of Oscillators/PLLs

Xiaolue Lai and Jaijeet Roychowdhury

University of Minnesota, Minneapolis, USA

Oscillators: A Special Simulation Challenge

- <u>Computation/size/accuracy</u>: much greater than for amps/mixers
 - inefficient for even 1-transistor oscillators
 - long startups: many cycles
 - tiny timesteps needed per cycle
 - integrated RF: 100s to 1000s of transistors
 - errors dependent on size of timesteps, integration method, size of perturbations
 - fundamental cause: marginal phase stability of all oscillators
 - numerical errors integrate over time

SPICE-based perturbation analysis of oscillators is not a good idea

Alternatives to SPICE-level simulation

- Use simplified phase macromodels
 - Obtain effects of external perturbations on phase directly without simulating the full circuit
 - (Linear Time-Invariant (LTI) models)

Limitations of Linear Phase Macromodels

- Linear models are <u>not generally applicable</u> for all effects
 - LTI model: narrow applicability
 - LPTV models, including:
 - Kaertner's LPTV IRF
 - Hajimiri's closed-form ISF
 - better, but validity depends on circuit/dynamical effects
- Eg, cannot capture nonlinear phenomena
 - injection locking, jitter, cycle slips, power grid noise effects, ...

Automatically-extracted Oscillator Macromodel works for <u>ALL effects</u>, <u>ALL oscillators</u>

Phase macromodel is <u>nonlinear</u> and <u>scalar</u> (nonlinear = captures complex dynamics) (scalar = small, fast to evaluate)

Drop-in replacement for linear phase models

Feature Comparison with Existing Methods

	LTI	LPTV	Our approach
Jitter from white noise	X	✓ X (i)	✓
Flicker/coloured jitter	X	?	>
Supply interference jitter	X	X √ (j)	>
VCO frequency control	✓ X (i)	✓ (j)	>
Injection locking	X	X	>
PLL lock/capture	✓ (j)	✓ (j)	>
Cycle slipping	X (j)	?	>
Amplitude effects	NA	NA	>
Model generation speed	Poor 🛈	Poor	Excellent
Model gen. robustness	Poor	Mediocre	Good 🛈
Model simulation speed	Excellent	Excellent	Excellent

PLL Capture and Lock Transients

PLL Capture/Lock: fref=1.07f0

>1000x speedup over full simulation

PLL Capture/Lock: fref = 1.074 f0

PLL Capture/Lock: fref = 1.083 f0

Oscillator and PLL jitter due to Supply Interference

Ring Oscillator: Per-cycle jitter as a function of sinusoidal supply interference frequency

PLL: Max jitter as function of supply interference frequency

PLL Cycle Slipping

PLL: cycle slipping (5mA, 10T shock)

PLL: cycle slipping (3mA, 10T shock)

Impact of Nonlinear Macromodels on PLL Design Process

Injection-aided PLL structure

- Lock acquisition time reduction is important
- High-pass path: induces injection locking
 - speeds lock acquisition
- Once locked, HPF path is switched out of the loop
 - to lower phase noise in lock

PLL Capture (freq shift vs time)

~3x faster lock acquisition due to injection aiding

Nonlinear PLL Macromodel: Benefits for Design

- Linear macromodels: wrong results (though fast)
 - can mislead, waste design time

• Nonlinear macromodels: can be trusted during design

- sanity checking via SPICE-level simulation: still indispensable
 - ~80 simulations in all
 - ~5 full SPICE-level simulations
 - macromodel offers 100-1000x speedup over full
 - few minutes/simulation (including macromodel generation)
- Enables much more thorough exploration of design space
 - many combinations of parameters, injection paths, ...
 - Impractical using full simulation alone
- Design exploration completed in ~1 week
 - Estimate: 10x saving in design time vs prior methodologies
 - (with much more complete exploration)

Coupled Oscillator Systems

Brusselator biochemical oscillators

Spontaneous Pattern Formation: 160,000 coupled Brusselator oscillators (g=1/15)

Simulation time: 200 minutes for 160 cycles (MATLAB); est speedup 1200x

Summary

Nonlinear oscillator macromodel captures:

- injection locking
- PLL lock and capture
- PLL cycle slipping
- phase noise and jitter in oscillators and PLLs
- pattern formation in biochemistry
- Productivity enhancer for in design flows
 - 10x faster?
 - Better, more completely explored designs