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Statistical static timing analysis

• Process variations getting prominent while feature sizes get-

ting smaller: timing or power yield loss

• Corner-based analysis is either pessimistic or expensive

• Statistical Static Timing Analysis (SSTA) is desperately needed

• Block-based SSTA: Chang et al. ICCAD03, Visweswariah et

al. DAC04

– Key computation: C = max(A, B), where A and B are

random variables.

• max is postponed but still needed in path-based SSTA.
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Approaches to statistical MAX operation

• C = max(A, B), where A and B are random variables.

• If A and B have Gaussian distributions

– Approximate C has also the Gaussian distribution

– Moment matching (least squares fitting): Chang et al.

ICCAD03, Visweswariah et al. DAC04

• If A and B do not have Gaussian distributions

– Chang et al. DAC05, Zhan et al. DAC05, Zhang et al.

DAC05
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How good are these approaches to statistical

MAX operation?

• Are they accurate?

• Is the computed delay greater or smaller than the actual

delay? at one given yield point? in a given range?
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Two necessary conditions for Max operation

• If C = max(A, B), we should have:

• Dominance relation: Pr(C ≥ A) = 1 and Pr(C ≥ B) = 1

• Comparison relation:

Pr(C > A) = Pr(B > A),

P r(C > B) = Pr(A > B).
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How good are existing approaches to statistical

MAX?

• A = 30 + ε1, B = 30.5 + 0.5ε1, compute C = max(A, B)

• Moment matching:

– Chang et al. ICCAD03: C is Gaussian, Pr(C ≥ A) =

89.46% and Pr(C ≥ B) = 62.57%

– Zhan et al. DAC05: C is not Gaussian, Pr(C ≥ A) =

63.43% and Pr(C ≥ B) = 49.17%

• Dominance relation does not hold.

• Comparison relation does not hold either.
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Our investigation

• Can we have an approximation with both conditions?
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Our investigation

• Can we have an approximation with both conditions?

• Bad news: no!



Our investigation

• Can we have an approximation with both conditions?

• Bad news: no!

• Good news: satisfying one of them will give an upper bound;

the other a lower bound.



Upper and lower bounds for a random variable

1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay

C
D

F

Data samples, not regular

Upper bound of the delay, regular

Lower bound of the delay, regular

8



Bound on timing yield is useful
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Bounds on timing yield

• P (x) is the lower bound of Q(x)

• Q(x) is the upper bound of P (x)
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Lower Bounds on timing yield

• Dominance relation: Pr(C ≥ A) = Pr(C ≥ B) = 1

• =⇒ C ≥ max(A, B)

• =⇒ Computed delay is always bigger than or equal to the

actual delay

• =⇒ Lower bound on timing yield
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Upper Bounds on timing yield

• A and B are random variables, and C = βA+(1−β)B where

β ∈ [0,1].

• =⇒ Comparison relation holds

• =⇒ max(A, B) ≥ C

• =⇒ Computed delay is always less than or equal to the actual

delay

• =⇒ Upper bound on timing yield

A

B

C=ßA+(1-ß)B<=max(A,B)
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Lower bound for Gaussian variables:

LBDomSSTA

• Objective: find a C for the computation of max(A, B) such

that Pr(C ≥ A) = Pr(C ≥ B) = 1

• For Gaussian variables, Pr(C ≥ A) = 1 cannot be satisfied

unless C = A+d where d is a non-negative deterministic real

number.

• Relax it to Pr(C ≥ A) ≥ η
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Approach in LBDomSSTA

• A = a0 +
∑

i aiεi, B = b0 +
∑

i biεi.

• ci = aiTA + bi(1− TA) ∀i = 1,2, . . . n in order to preserve the

covariance, where TA is the tightness probability

• Adjust c0 such that Pr(C ≥ A) ≥ η and Pr(C ≥ B) ≥ η.
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Upper bound for Gaussian variables:

UBCompSSTA

• C = TAA + (1− TA)B

• If the random variables have at most 10% deviation, theo-

retically, the maximal errors on the mean and the standard

deviation between UBCompSSTA and the moment matching

are only 2.66% and 1.41%.

• With more positive correlations, the errors become smaller.

• Moment matching is also an approximation approach, so it

is possible for UBCompSSTA to have smaller errors than the

moment matching approach in reality.
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Upper bound for Non-Gaussian variables:

UBCompSSTA

• C = TAA + (1− TA)B

• Using the quadratic model in Zhang et al. DAC05, theoret-

ically, UBCompSSTA gets exactly the same standard devia-

tion as in Zhang et al. DAC05, and gets the mean very close

to that approach (max error≤2.66%).
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Experimental results

ISCAS85, 10% deviation, objective yield 90%, η = 90%
name UBCompSSTA LBDomSSTA Monte Carlo

time (s) µ σ yield time (s) µ σ yield µ σ yield
c1355 0.01 1580 40 91.15 0.01 1585 40 89.07 1583 40 90.00
c1908 0.01 4000 100 91.92 0.01 4019 101 88.49 4011 100 90.00
c2670 0.01 2918 61 91.15 0.01 2926 61 89.25 2922 61 90.00
c3540 0.03 4700 120 92.22 0.02 4727 120 88.30 4715 119 90.00
c5315 0.03 4900 123 91.47 0.02 4919 123 88.69 4910 125 90.00
c6288 0.03 12400 312 92.36 0.03 12477 314 87.90 12443 313 90.00
c7552 0.05 4300 107 91.47 0.04 4320 107 88.30 4311 107 90.00

Tight bounds.
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Experimental results

ISCAS85, 10% deviation, objective yield 90%, η = 90%
name UBCompSSTA LBDomSSTA Moment-matching

time (s) µ σ yield time (s) µ σ yield µ σ yield
c1355 0.01 1580 40 91.15 0.01 1585 40 89.07 1583 40 89.62
c1908 0.01 4000 100 91.92 0.01 4019 101 88.49 4018 101 88.49
c2670 0.01 2918 61 91.15 0.01 2926 61 89.25 2923 61 89.80
c3540 0.03 4700 120 92.22 0.02 4727 120 88.30 4718 120 89.44
c5315 0.03 4900 123 91.47 0.02 4919 123 88.69 4913 123 89.25
c6288 0.03 12400 312 92.36 0.03 12477 314 87.90 12464 314 88.69
c7552 0.05 4300 107 91.47 0.04 4320 107 88.30 4313 107 89.44

Fast estimation of the maximal errors of moment-matching.
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The CDFs from different approaches for

“c6288”.
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Conclusions

• max is an important operation in SSTA.

• Existing approaches do not satisfy two necessary conditions:

– Dominance: Pr(max(A, B) ≥ A) = Pr(max(A, B) ≥ B) =

1

– Comparison: Pr(max(A, B) > A) = Pr(B > A)

• Enforcement of dominance gives an upper bound

• Enforcement of comparison gives a lower bound

• Both are useful for yield estimation
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Thank you
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