

Fudan University

Stochastic Sparse-grid Collocation Algorithm (SSCA) for Periodic Steady-State Analysis of Nonlinear System with Process Variations

Jun Tao¹, Xuan Zeng^{1*}, Cai Wei², Yangfeng Su³, Dian Zhou^{1,4}, Charles Chiang⁵ ¹ASIC & System State Key Lab., Microelectronics Dept., Fudan University, Shanghai, China ²Department of Mathematics, University of North Carolina at Charlotte, Charlotte, USA ³Mathematics Dept., Fudan University, Shanghai, P.R.China ⁴Electrical Engineering Dept., University of Texas at Dallas, Richardson, USA ⁵Advanced Technology Group, Synopsys Inc., Mountain View, USA

ASIC & System State-Key Lab

- Introduction
- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)
 - Stochastic Collocation Algorithm
 - □ Sparse-grid Technique
- Numerical Results
- Conclusion

Introduction

- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)
 - Stochastic Collocation Algorithm
 - □ Sparse-grid Technique
- Numerical Results
- Conclusion

Introduction

- Impact of process variations on RF/Mixed-Signal system → Be amplified exponentially
 - Variation aware steady-state simulation is quite demanding
- Taylor series Methods
 - CORE/PMOR for linear system and TPWL-PMOR for nonlinear system
 - □ Limitations:
 - Same expansion order → Random process parameters and frequency parameter have different range
 - No consideration of randomness of process variations → No convergent expansion and can only handle small variations

Introduction

Stochastic Spectral Algorithms

□ Stochastic Galerkin Algorithm for Linear system

- A much complicated coupled system for nonlinear circuit → Unacceptable computational complexity
- □ Stochastic Collocation Algorithm for Delay Modeling
 - Selection of collocation points
 - Direct Tensor Product Scheme
 - Complexity increases exponentially with the dimension of random variable space
 - □ Efficient Collocation Method (ECM) → Heuristic method
 - "Rank deficient problem"
 - "Runge Phenomenon"

Introduction

Stochastic Spectral Algorithms Stochastic Galerkin Algorithm for Linear system A much complicated coupled system for nonlinear circuit \rightarrow Unacceptable computational complexity Stochastic Collocation Algorithm for Delay Modeling Selection of collocation points Stochastic Collocation Method → Steady-State analysis of nonlinear system with process variations \succ Sparse-grid technique \rightarrow decrease the computational complexity while maintain the acceptable accuracy Stochastic Sparse-grid Collocation Algorithm (SSCA)

Introduction

- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)
 - Stochastic Collocation Algorithm
 - Sparse-grid Technique
- Numerical Results
- Conclusion

Problem Definition

- Introduction
- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)
 - □ Stochastic Collocation Algorithm
 - □ Sparse-grid Technique
- Numerical Results
- Conclusion

$$\left\langle E_n\left(\vec{\xi}\right), \delta\left(\vec{\xi} - \vec{\xi}_j\right) \right\rangle = 0 \qquad \boldsymbol{j} = 1, 2, \cdots, \boldsymbol{J}$$

Residue $\rightarrow E_n(\vec{\xi}) = \frac{dx_d(t, \vec{\xi})}{dt} - f(x_d(t, \vec{\xi}), t, \vec{\xi}, u(t))$

The original function is exactly satisfied at some collocation points in process variable space

- Step1. Select a series of collocation points
- Step2. Calculation of steady-state response at each collocation point
- Step3. Computation of Steady-state behavior for nonlinear system with process variations

Step1. Select a series of collocation points
 Direct Tensor Product Scheme
 Efficient Collocation Method (ECM)

Step1. Select a series of collocation points
 Direct Tensor Product Scheme:

: 1-dimensiono: 2-dimension

Q-order M-dimension Points Number: $P_t = (Q+1)^M$

.3 L -3	-	2		-1	0	1		2	2	
0	0	0	0	00	0	00	0	0	0	0
2	0	0	0	00	0	00	0	0	0	0
0	0	0	0	00	0	00	0	0	0	0
1-0	0	0	0	00	0	00	0	0	0	0
0	0	0	0	00	0	00	0	0	0	0
0-0	0	0	0	0 0	0	00	0	0	0	0
1 -0 0	00	000	000	000	000	000	00	0 0	00	00
0	0	0	0	00	0	0 0	0	0	0	0
2-0	0	0	0	0 0	0	00	0	0	0	0
0	0	0	0	00	0	0 0	0	0	0	0
0	0	0	0	00	0	00	0	0	0	0

- Step1. Select a series of collocation points
 Direct Tensor Product Scheme:
 - □ Efficient Collocation Method (ECM):
 - A simple heuristic approach
 - The number of selected collocation points is the same as the number of the applied Hermite polynomial basis

- Step1. Select a series of collocation points
- Step2. Calculation of steady-state response at each collocation point
 A truncated series

$$\frac{dx(t,\vec{\xi}_k)}{dt} = f\left(x(t,\vec{\xi}_k), t, \vec{\xi}_k, u(t)\right) \qquad \begin{array}{c} \text{of Fourier basis} \\ \text{(HBM) or wavelet} \\ \text{basis (WBH)} \end{array}$$

- Step3. Computation of Steady-state behavior for nonlinear system with process variations
 - Direct Tensor Product Scheme
 - Weighted Least Square Method

$$\begin{aligned} x_d\left(t,\vec{\xi}\right) &= \sum_{l=1}^{L} X_l\left(\vec{\xi}\right) \psi_l\left(t\right) & X_{1l} = \sum_{n=1}^{N} c_{nl} H_n\left(\vec{\xi}_1\right) \\ &= \sum_{l=1}^{L} \sum_{n=1}^{N} c_{nl} H_n\left(\vec{\xi}\right) \psi_l\left(t\right) & \blacksquare & X_{2l} = \sum_{n=1}^{N} c_{nl} H_n\left(\vec{\xi}_2\right) \\ &\vdots & \vdots \\ X_l\left(\vec{\xi}\right) &= \sum_{n=1}^{N} c_{nl} H_n\left(\vec{\xi}\right) & \vdots \\ X_{Pl} &= \sum_{n=1}^{N} c_{nl} H_n\left(\vec{\xi}_{P_l}\right) & \vdots \\ \end{aligned}$$

 Step3. Computation of Steady-state behavior for nonlinear system with process variations
 Efficient Collocation Method (ECM)

Rank Deficient Problem: the rank of matrix H may be smaller than its size, and ECM may fail to converge for high order expansion

- Introduction
- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)

Stochastic Collocation Algorithm

□ Sparse-grid Technique

- Numerical Results
- Conclusion

Sparse Grid Technique

*: Sparse-grid technique o: Direct Tensor product : 1-dimentional

> Q-order M-dimensional space

$$P_{s} \sim \frac{2^{Q}}{Q!} M^{Q} \sim 2^{Q} N$$
$$N = \binom{M+Q}{M}$$

³ [0) (0	0	0	0 0	C	⊛	0 0	0	0	0	0
) (0	0	0	⊛ (C	۲	0 €	0	0	0	0
20) (0	⊛	0	⊛ (C	⊛	○ €	0	⊛	0	0
0) (0	0	0	0 0	C	⊛	0 0	0	0	0	0
1-0) (⊕ ○	⊛ ○	00	() ⊛ (₽ ⊃	⊛	⊕ C O €	000	⊕ ○	⊛ ○	00
0 - 🛞) (€	⊛	⊛	⊛ €	₿	€	⊛ ⊛	• 🛞	⊛	⊛	⊛
0 1 -C) (O ⊛	() ⊛	00	⊕ (○ €	D ₿	⊛	O€ ⊛C	000	O ⊛	() ⊛	0
0) (0	0	0	0 0	C	⊛	0 0	0	0	0	0
) (0	۲	0	⊛ (C	⊛	0 €	0	\€	0	0
0) (0	0	0	⊛ (C	⊛	0 €	0	0	0	0
30			0	Ο	Ç (8		Ο		C	
-3		-2			-1		0	1		2		3

Sparse Grid Technique

Theorem: the following equation is exact for all M-variables polynomials of order at most 2Q+1 [1]

$$\int_{\vec{\xi}^s} f\left(\vec{\xi}\right) p\left(\vec{\xi}\right) d\vec{\xi} \approx \sum_{i=1}^{r_s} w_i^s f\left(\vec{\xi}_i^s\right)$$

□ Similar procedure with Direct Tensor Scheme

Compared with Direct Tensor Product Scheme

- Much smaller complexity
- Similar accuracy

Compared with Efficient Collocation Method

- Much higher accuracy
- No "Runge Phenomenon" and no "Rank deficient problem"

[1] D.B.Xiu and J.S.Hesthaven, High order collocation method for differential equations with random inputs. SIAM Journal of Sci. Comput., 27(3):1118-1139, 2005

Collocation

points generated

by Sparse-grid

Technique

- Introduction
- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)
 - Stochastic Collocation Algorithm
 - □ Sparse-grid Technique
- Numerical Results
- Conclusion

A DC power supply circuit

- The input is a sinusoidal voltage with frequency 100Hz and amplitude 10V
- Monte Carlo analysis with 10⁴ sampling points by HSPICE is regarded as the standard result.

Any small variations of each circuit parameter will result in exponential variations for the state variable System Equations

$$i_{d} = i_{s} \left(e^{v_{1}/v_{th}} - 1 \right)$$

$$C_{1} \frac{dv_{1}}{dt} = \frac{v_{in} - v_{1} - v_{2}}{R_{1}} - i_{d}$$

$$C_{2} \frac{dv_{2}}{dt} = \frac{v_{in} - v_{1} - v_{2}}{R_{1}} - i_{L}$$

$$C_{3} \frac{dv_{3}}{dt} = i_{L} - \frac{v_{3}}{R_{2}}$$
Testing signal
$$L_{1} \frac{di_{L}}{dt} = v_{2} - v_{3}$$

Comparison with Taylor Expansion

R1 and R2 : Random parameters with Gaussian variations <= 7%

Very high convergence rate of Homogeneous Chaos approximation for stochastic process

Comparison with Stochastic Galerkin Algorithm

 i_s , v_{th} , R_1 , R_2 : random variables with Gaussian variations <= 7%

Accuracy of SGA with Sparse-Grid Technique and SSCA are similar

Comparison with ECM

1

2 3

• SSCA

much higher accuracy and convergence rate than ECM

• ECM

✓ Rank deficient problem : order is higher than 3

✓ Runge phenomenon: the relative error for order 2 is smaller than those for order 1 and order 3

i_s , v_{th} , R_1 , R_2 : random variables with Gaussian variations <= 7%

- Complexity
- Stochastic Galerkin Algorithm Out of memory with the order higher than 3
- SCA with Direct Tensor
 Scheme
 CPU cost increases
 exponentially
- SSCA

Acceptable complexity

- Introduction
- Problem Definition
- Stochastic Sparse-grid Collocation Algorithm (SSCA)
 - □ Stochastic Collocation Algorithm
 - □ Sparse-grid Technique
- Numerical Results
- Conclusion

Conclusion for SSCA

- Compared with the Taylor series methods
 - \Box Homogeneous chaos expansion \rightarrow random process variations
 - Exponential Convergence Rate
 - □ Fourier basis or Wavelet basis → time domain
- Compared with Stochastic Galerkin method
 - Much smaller complexity with similar accuracy
- Compared with Tensor Product Scheme
 - Much fewer collocation points
- Compared with Efficient Collocation Method
 - □ High convergence rate and high accuracy
 - □ No "Rank deficient problem" and no "Runge phenomenon"

Fudan University

Stochastic Sparse-grid Collocation Algorithm (SSCA) for Periodic Steady-State Analysis of Nonlinear System with Process Variations

Thank you

ASIC & System State-Key Lab