
Retiming for Synchronous
Data Flow Graphs

N. Liveris, C.Lin, J. Wang, H. Zhou, P. Banerjee*
Northwestern University, Evanston IL

*University of Illinois, Chicago IL

ASP-DAC 2007, Yokohama, Japan
January 25, 2007

Outline

• Intro to SDF and retiming
• Previous work
• First Algorithm
• Improved Algorithm
• Experimental Results
• Conclusion

Synchronous Dataflow Graphs
• Each node represents a
computation process

– constant production and
consumption rate
– executed a specific number
of times during each
complete cycle

• Edge represents a
channel between two
processes

– FIFO protocol for tokens
– initial number of tokens on
edge (delays)

qB= 2

A CB
4 6

1 1

3 2

1

4
qA= 3 qC= 3

p(e) c(e)w(e)

Blocking vs Non-blocking
Schedule

Example of
a blocking
schedule

Example of a
non-blocking

schedule

A1
B1

B2 C1 A1
B1

B2 C1 A1
B1

B2 C1

cycle 1 cycle 3cycle 2

A1
B1

B2 C1
A1
B1

B2 C1
A1
B1

B2 C1

cycle 1
cycle 2

cycle 3

A B C36 1 2

1 1

3

2

qA=1 qB=2 qC=1

p(e) c(e)w(e)

Retiming SDF Graphs

• DSP applications with constant consumption and
production data rates and predictable execution time
are modeled by SDF graphs

• Some applications whose behavior is determined at
run-time or that share resources with high-priority tasks
are normally executed on programmable cores

• When data dependencies exist between SDF actors
and tasks executed on programmable cores, a non-
blocking schedule may not be feasible

Example

p(e) c(e)w(e)

 d q
A 2 2
B 3 3
C 5 2

CPU

A

CPU

B C3 2

1 1

4

4
2 3

1 1 1

2

2
3

1 1

2

2

2

CPU

T=8

CPU

A1

A2

B1

B2

B3

C1

C2

A1

A2

B1

B2

B3

C1

C2

A1

A2

B1

B2

B3

C1

C2

Example - retimed

p(e) c(e)w(e)

 d q
A 2 2
B 3 3
C 5 2

CPU

A

CPU

B C3 2

1 1

4

6
2 3

1 1 1

2

2
3

1 1

2

2

CPU

T=5

CPU

1

A1

A2

B1

B2

B3

C1

C2

A1

A2

B1

B2

B3

C1

C2

A1

A2

B1

B2

B3

C1

C2

Previous Approach
• T. O’Neil, E. Sha; “Retiming Synchronous Dataflow Graphs to Reduce
Execution Time”;IEEE Transaction on Signal Processing, Oct 2001

•Only check whether a given cycle time is feasible
•Computing the maximum path in the EHG (Equivalent
Homogenous Graph)

– a distinct node for each node instance
– each token transferred on a separate edge
– p(e)=c(e)=1
– number of edges Σ(u,v) in E q(v) c(u,v)

• Selection of node v, whose r(v) will be increased, is
based on heuristic
•Termination criteria is not provable

Our Approach

• Computation of max length is done on the SDF graph
– avoiding expensive generation of EHG
– avoiding computation for nodes that cannot affect the max
length path

• Selection of nodes is justified based on properties
• Algorithm reduces cycle time at each iteration or
proves that the cycle time of the iteration is optimal
• Upon termination an optimal solution is generated

Dependence Walk

qB= 2

A CB
4 6

1 1

3 2

1

4
qA= 3 qC= 3

W = (A,1) (B,1) (C,1) (A,2) (B,2) (C,3)

p(e) c(e)w(e)

(node name, instance number)

Execution of (vi,li) can
start only after
execution of (vi-1,li-1)
has been completed.

Critical Dependence Walk

qB= 2

A CB
4 6

1 1

3 2

1

4
qA= 3 qC= 3

W = (A,1) (B,1) (C,1) (A,2) (B,2) (C,3)

p(e) c(e)w(e)

Execution of (vi,li)
starts exactly when
execution of (vi-1,li-1)
completes and (v0,l0)
starts at the
beginning of the
period (time 0)

(A,1) = (v0,l0)

Node Selection

If W is a critical walk,
with t(vn,ln)+dn=T, then
the only way to obtain
graph with T’ < T is by
increasing r(vn).

qB= 2

A CB
4 6

1 1

3 2

1

4
qA= 3 qC= 3

p(e) c(e)w(e)

W = (A,1) (B,1) (C,1) (A,2) (B,2) (C,2) (A,3)

(A,3) = (vn,ln)

Retimed Graph

In this example the
length of W has been
reduced after the
retiming operation.

qB= 2

A CB
4 6

1 1

3 2

2

qA= 3 qC= 3

p(e) c(e)w(e)

W = (A,2) (B,1) (C,1) (A,3) (B,2) (C,3)

Maximum Length Walk
Computation

• Execution of (vi,li) cannot start
before execution of (vi-1,li-1) has
finished
• Computing the arrival time of
each walk starting from the last
instance of each node
• Dynamic programming
algorithm (memory function)

Termination Conditions

• It is proven that the algorithm will always find a
basic optimal solution, i.e. in the solution there
will exist v such that r(v) < q(v)
• Following from the above condition and from
the conditions that can trigger an r change:

If any of these conditions are violated, the algorithm
cannot improve the best solution found thus far.

First Version of the Algorithm

• Finds last node of a critical walk for which t(vn,ln)+dn=T
• Increments r(vn) (r’(vn) = r(vn) +1)
• Recomputes arrival times for the nodes using the
dynamic programming algorithm
• Stores solution if T’ < T
• Continues this process until any of the termination
conditions are satisfied
• Worst-case complexity O(|V|3|E|qave

2)

Improved Version

• First version changes the r(v) of one node by 1
and then tries to find critical walk again

– guarantees that the edge weight will never
become negative, but
– for each r change, arrival times have to be
recomputed

• Improved version relaxes the non-negativity
constraint for edges, and does more than one
change in each iteration
• Mechanism can be used to validate additional
constraints for edges

Improved Version

• Maintains two queues:
• First queue holds the nodes, which require
an r-value increase in order for a potential
reduction of T to occur
• Second queue holds edges with negative
weights. The r-value of the head of each
edge needs to be increased, so that the non-
negativity constraint is satisfied

• Arrival times are recomputed only after
queues are empty (all necessary r-value
increases have occurred)

Execution Snapshot 1

A B C D E

F

16

1

16 16 161

41

1 1 14

1

11

1

4

ro(A) = 0 r(A) = 0 tf(A,qA) = 2
ro(B) = 0 r(B) = 0 tf(B,qB) = 3 W=E4→A16→B1
ro(C) = 1 r(C) = 1 tf(C,qC) = 2
ro(D) = 0 r(D) = 0 tf(D,qD) = 3
ro(E) = 4 r(E) = 4 tf(E,qE) = 1
ro(F) = 0 r(F) = 0 tf(F,qF) = 2
Tstep= 3 Q1={B} Q2 = { }

A B C D E

F

4

16

1

16 16 161

41

1 1 14

1

11

1

3

ro(A) = 0 r(A) = 0 tf(A,qA) = 2
ro(B) = 0 r(B) = 0 tf(B,qB) = 3
ro(C) = 1 r(C) = 1 tf(C,qC) = 2
ro(D) = 0 r(D) = 0 tf(D,qD) = 3
ro(E) = 0 r(E) = 3 tf(E,qE) = 4 W=C1→D1→E4
ro(F) = 0 r(F) = 0 tf(F,qF) = 2
Tstep= 4 Q1 ={E} Q2 = { }

Execution Snapshot 2

A B C D E

F1 1

16 16 161

41

1 1 14

1

11

1

416

ro(A) = 0 r(A) = 0 tf(A,qA) = 2
ro(B) = 0 r(B) = 1 tf(B,qB) = 1
ro(C) = 1 r(C) = 1 tf(C,qC) = 3 W = B1→C1
ro(D) = 0 r(D) = 0 tf(D,qD) = 4 W=B1→C1→D1
ro(E) = 4 r(E) = 4 tf(E,qE) = 1
ro(F) = 0 r(F) = 0 tf(F,qF) = 2
Tstep= 3 Q1={C,D} Q2 = { }

A B C D E

F1

16 16 161

41

1 1 14

1

11

1

16 16

ro(A)=0 r(A) = 0 tf(A,qA)=5 W=C1→D1→E4→A16
ro(B)=0 r(B) = 1 tf(B,qB)=1
ro(C)=1 r(C) = 2 tf(C,qC)=2
ro(D)=0 r(D) = 1 tf(D,qD)=3 W = C1→D1
ro(E)=4 r(E) = 4 tf(E,qE)=4 W = C1→D1→E4
ro(F)=0 r(F) = 0 tf(F,qF)=5 W = C1→D1→F1

Tstep= 3 Q1=
{A,D,E,F} Q2 = { }

Experimental Results (qmax=32)

Modeling Environment

A

CPU

B C3 2

1 1

4

4
2 3

1 1 1

2

2
3

1 1

2

2

2 A B C3 2

1 1

4

4
2 3

1 1 1

2

2
3

1 1

2

2

2

I O
1

1 1

 d q
A 2 2
B 3 3
C 5 2
 I 0 1
O 0 1

Experimental Results

*

*

Summary

• Presented two new algorithms for
retiming SDF graphs

• Algorithms aim at minimizing the cycle
length of the SDF and are optimal

• Improved version is orders of magnitude
faster than other approaches

Thank you

	Retiming for Synchronous Data Flow Graphs
	Outline
	Synchronous Dataflow Graphs
	Blocking vs Non-blocking Schedule
	Retiming SDF Graphs
	Example
	Example - retimed
	Previous Approach
	Our Approach
	Dependence Walk
	Critical Dependence Walk
	Node Selection
	Retimed Graph
	Maximum Length Walk Computation
	Termination Conditions
	First Version of the Algorithm
	Improved Version
	Improved Version
	Execution Snapshot 1
	Execution Snapshot 2
	Experimental Results (qmax=32)
	Modeling Environment
	Experimental Results
	Summary
	Thank you

