Retiming for Synchronous Data Flow Graphs

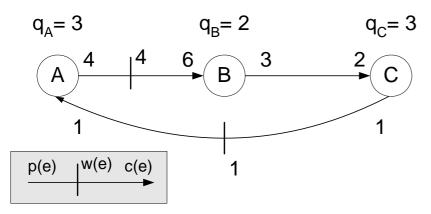
N. Liveris, C.Lin, J. Wang, H. Zhou, P. Banerjee* Northwestern University, Evanston IL *University of Illinois, Chicago IL

> ASP-DAC 2007, Yokohama, Japan January 25, 2007

Outline

- Intro to SDF and retiming
- Previous work
- First Algorithm
- Improved Algorithm
- Experimental Results
- Conclusion

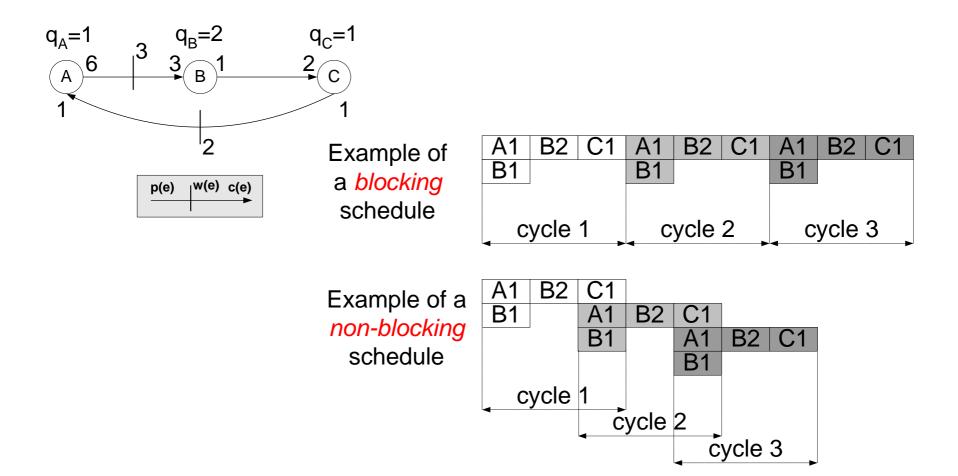
Synchronous Dataflow Graphs



- Each node represents a computation process
 - constant production and consumption rate
 - executed a specific number of times during each complete cycle
- Edge represents a channel between two processes
 - FIFO protocol for tokens

– initial number of tokens on edge (delays)

Blocking vs Non-blocking Schedule



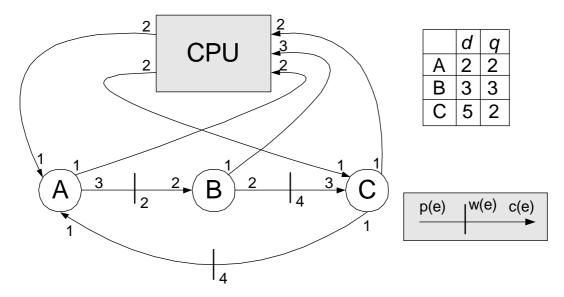
Retiming SDF Graphs

• DSP applications with constant consumption and production data rates and predictable execution time are modeled by SDF graphs

• Some applications whose behavior is determined at run-time or that share resources with high-priority tasks are normally executed on programmable cores

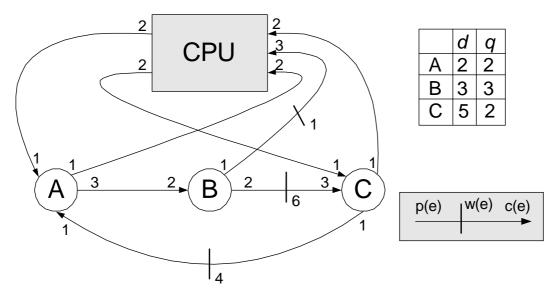
• When data dependencies exist between SDF actors and tasks executed on programmable cores, a nonblocking schedule may not be feasible

Example



CPU	B1		C2	CPU	B1		C2	CPU	B1		C2
	A1	B2			A1	B2			A1	B2	
	A2	B3			A2	B3			A2	B3	
		C1				C1				C1	
						T=8	3				_

Example – retimed



CPU	C1		CPU		C1	CPU		C1
	C2				C2			C2
	A1	B1		A1	B1		A1	B1
	A2	B2		A2	B2		A2	B2
		B3			B3			B3
]	Г=5			

Previous Approach

• T. O'Neil, E. Sha; "Retiming Synchronous Dataflow Graphs to Reduce Execution Time"; IEEE Transaction on Signal Processing, Oct 2001

•Only check whether a given cycle time is feasible

•Computing the maximum path in the EHG (Equivalent Homogenous Graph)

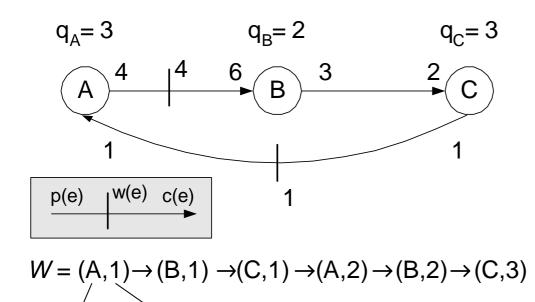
- a distinct node for each node instance
- each token transferred on a separate edge
- -p(e)=c(e)=1
- number of edges $\Sigma_{(u,v) \text{ in } E} q(v) c(u,v)$
- Selection of node v, whose r(v) will be increased, is based on heuristic

•Termination criteria is not provable

Our Approach

- Computation of max length is done on the SDF graph
 - avoiding expensive generation of EHG
 - avoiding computation for nodes that cannot affect the max length path
- Selection of nodes is justified based on properties
- Algorithm reduces cycle time at each iteration or proves that the cycle time of the iteration is optimal
- Upon termination an optimal solution is generated

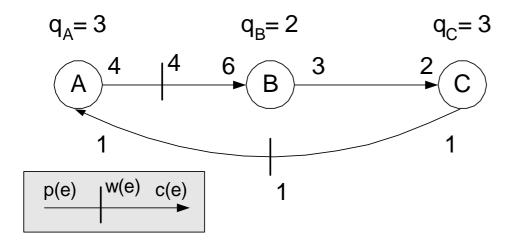
Dependence Walk



Execution of (v_i, l_i) can start only after execution of (v_{i-1}, l_{i-1}) has been completed.

(node name, instance number)

Critical Dependence Walk

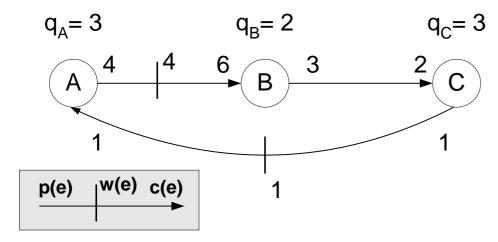


$$W = (A,1) \rightarrow (B,1) \rightarrow (C,1) \rightarrow (A,2) \rightarrow (B,2) \rightarrow (C,3)$$

 $(A,1) = (v_0, I_0)$

Execution of (v_i, l_i) starts exactly when execution of (v_{i-1}, l_{i-1}) completes and (v_0, l_0) starts at the beginning of the period (time 0)

Node Selection

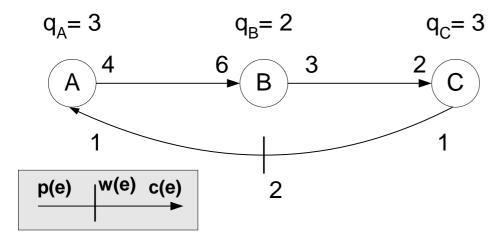


If W is a critical walk, with $t(v_n, I_n)+d_n=T$, then the only way to obtain graph with T' < T is by increasing $r(v_n)$.

 $W = (A,1) \rightarrow (B,1) \rightarrow (C,1) \rightarrow (A,2) \rightarrow (B,2) \rightarrow (C,2) \rightarrow (A,3)$

$$(\mathsf{A},3) = (\mathsf{v}_{\mathsf{n}},\mathsf{I}_{\mathsf{n}})$$

Retimed Graph



In this example the length of W has been reduced after the retiming operation.

 $W = (A,2) \rightarrow (B,1) \rightarrow (C,1) \rightarrow (A,3) \rightarrow (B,2) \rightarrow (C,3)$

Maximum Length Walk Computation

```
proc get_t(v,k,r)
if (k < 1) then
     return -d(v);
fi;
if (t[v,k] \neq -1) then
     return t[v,k];
fi;
maxt \leftarrow -1;
for each (u,v) \in E
    l \leftarrow \left\lceil \frac{k \cdot c(u,v) - w_r(u,v)}{p(u,v)} \right\rceil;
     t_1 \leftarrow \text{get}_t(u, l) + d(u);
     if (maxt < t_1) then
        maxt \leftarrow t_1;
     fi;
endfor;
t[v,k] \leftarrow maxt;
return t[v,k];
```

• Execution of (v_i, l_i) cannot start before execution of (v_{i-1}, l_{i-1}) has finished

• Computing the arrival time of each walk starting from the last instance of each node

• Dynamic programming algorithm (memory function)

Termination Conditions

- It is proven that the algorithm will always find a basic optimal solution, i.e. in the solution there will exist v such that r(v) < q(v)
- Following from the above condition and from the conditions that can trigger an r change: $(\forall v : r(v) \le 2 \cdot q_v \cdot |V|)$

If any of these conditions are violated, the algorithm cannot improve the best solution found thus far.

First Version of the Algorithm

- Finds last node of a critical walk for which $t(v_n, I_n)+d_n=T$
- Increments $r(v_n) (r'(v_n) = r(v_n) + 1)$
- Recomputes arrival times for the nodes using the dynamic programming algorithm
- Stores solution if T' < T
- Continues this process until any of the termination conditions are satisfied
- Worst-case complexity $O(|V|^3|E|q_{ave}^2)$

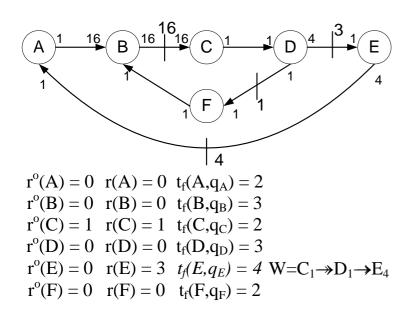
Improved Version

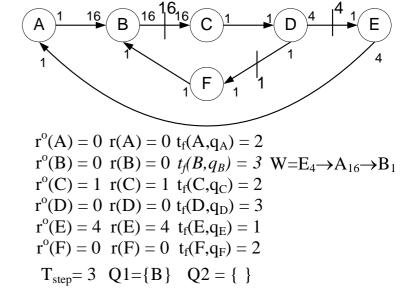
- First version changes the r(v) of one node by 1 and then tries to find critical walk again
 - guarantees that the edge weight will never become negative, but
 - for each r change, arrival times have to be recomputed
- Improved version relaxes the non-negativity constraint for edges, and does more than one change in each iteration
- Mechanism can be used to validate additional constraints for edges

Improved Version

- Maintains two queues:
 - First queue holds the nodes, which require an r-value increase in order for a potential reduction of T to occur
 - Second queue holds edges with negative weights. The r-value of the head of each edge needs to be increased, so that the non-negativity constraint is satisfied
- Arrival times are recomputed only after queues are empty (all necessary r-value increases have occurred)

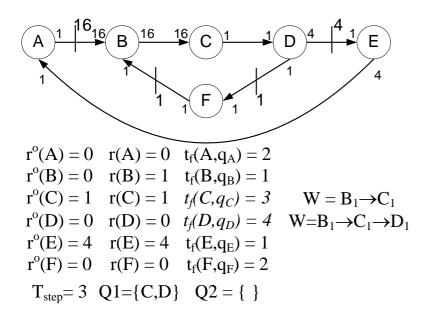
Execution Snapshot 1

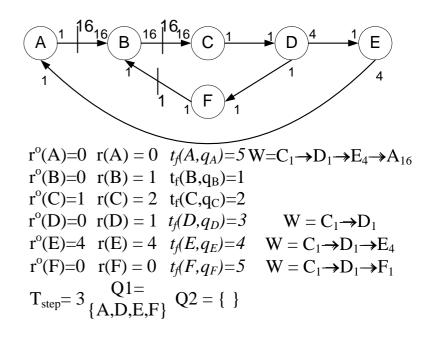




 $T_{step} = 4$ Q1 = {E} Q2 = { }

Execution Snapshot 2

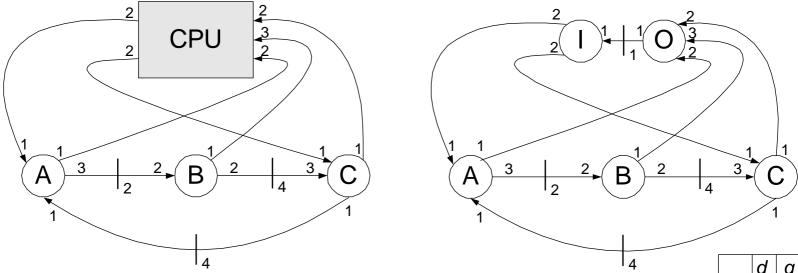




Experimental Results (qmax=32)

Graph		Т	~ *	execution time (sec)			
Graph	O'Neil's	First	Improved	O'Neil's	First	Improved	
<i>s</i> 27	459	416	416	1.924	0.012	0.060	
s208.1	834	834	834	2m:50.537	1.287	0.049	
s298	1083	1027	1027	55m:30.897	2.696	0.095	
s344	2534	2468	2468	70m:29.472	3.457	0.415	
s349	1503	1415	1415	8m:18.343	4.140	0.257	
s382	1312	1273	1273	19m:29.061	5.261	0.344	
s386	938	806	806	1m:40.775	2.733	0.129	
s444	1185	888	888	48m:18.215	2.825	0.191	
<i>s</i> 526	2161	2007	2007	120m:00.000	7.796	0.479	
<i>s</i> 641	690	610	610	54.758	9.837	0.534	
<i>s</i> 820	1594	1573	1573	46m:26.437	11.805	0.622	
s953	1776	1776	1776	5m:26.620	16.650	0.919	

Modeling Environment



	d	q
Α	2	2
В	3	3
С	5	2
I	0	1
0	0	1

Experimental Results

Croph	ſ		Execution		
Graph	Initial	Final	Time (sec)		
s27	368	351	0.005		
s208.1	1035	852	0.020		
s298	1052	742	0.045		
s344	1062	928	0.164		
s349	933	833	0.016		
s382	951	908	0.021		
s386	745	650	0.051		
<i>s</i> 444	902	882	0.027		
<i>s</i> 526	1690	1690	0.009		
<i>s</i> 641	694	665	0.011		
<i>s</i> 820	1264	1219	0.032		
<i>s</i> 953	1558	1558	0.010		

*

*

Summary

- Presented two new algorithms for retiming SDF graphs
- Algorithms aim at minimizing the cycle length of the SDF and are optimal
- Improved version is orders of magnitude faster than other approaches

Thank you