Retiming for Synchronous
Data Flow Graphs

N. Liveris, C.Lin, J. Wang, H. Zhou, P. Banerjee*
Northwestern University, Evanston IL
*University of lllinois, Chicago IL

ASP-DAC 2007, Yokohama, Japan
January 25, 2007

Outline

Intro to SDF and retiming
Previous work

First Algorithm

Improved Algorithm
Experimental Results
Conclusion

Synchronous Dataflow Graphs

- Each node represents a
Computation Process
Gp=3 Og= 2 Gc= 3 — constant production and
2 consumption rate

— executed a specific number
of times during each

6~@ 3
N

complete cycle
p(e) |w(e) c(€) 1
| g - Edge represents a

channel between two
processes
— FIFO protocol for tokens

— initial number of tokens on
edge (delays)

Blocking vs Non—blocking
Schedule

0g=2 =1
351 2
,® » C
1
p@) |WE) cfe) a blocking Bl Bl B1
| - schedule
cycel | cycle2 | cycle3
Al B2 C1
Example of a 57 == X9 rgorer
non-blocking B1 Al B2 C1
schedule B1
~cyclel
~ cycle2
~ cycle3

Retiming SDF Graphs

« DSP applications with constant consumption and
production data rates and predictable execution time
are modeled by SDF graphs

« Some applications whose behavior is determined at
run-time or that share resources with high-priority tasks
are normally executed on programmable cores

* When data dependencies exist between SDF actors
and tasks executed on programmable cores, a non-
blocking schedule may not be feasible

Example

diq
Al2|2
B 3|3
Cl|5|2
pe) W) c(e)
| >
CPU| B1 C2 CPU B1 C2 CPU | B1 c2
Al | B2 Al | B2 Al | B2
A2 | B3 A2 | B3 A2 | B3
C1 C1 C1
T=8

A

\4

Example — retimed

dig

Al2|2

B (33

clsl2
pe) W) c(e)
I -—

CPU C1l CPU Cl CPU Cl

Cc2 C2 C2
Al Bl Al Bl Al Bl
A2 B2 A2 B2 A2 B2
B3 B3 B3

=5

Previous Approach

® T. O'Neil, E. Sha; “Retiming Synchronous Dataflow Graphs to Reduce
Execution Time”;IEEE Transaction on Signal Processing, Oct 2001

*Only check whether a given cycle time is feasible
«Computing the maximum path in the EHG (Equivalent
Homogenous Graph)

— a distinct node for each node instance
— each token transferred on a separate edge

— p(e)=c(e)=1
— number of edges £, ;g A(v) c(u,v)

« Selection of node v, whose r(v) will be increased, Is
based on heuristic

*Termination criteria is not provable

Our Approach

e Computation of max length is done on the SDF graph
— avoiding expensive generation of EHG

— avoiding computation for nodes that cannot affect the max
length path

» Selection of nodes is justified based on properties

e Algorithm reduces cycle time at each iteration or
proves that the cycle time of the iteration is optimal

« Upon termination an optimal solution is generated

Dependence Walk

qA: 3 qB: 2 qC: 3

4 (4 6 3 2
@ | ’@ Execution of (v,l) can

1 start only after
o) MO ol 1 execution of (v, .l ;)
| > has been completed.

wW=(A1)—-(B,1) »(C,1)—~>(A2)—~>(B,2)—(C,3)

(node name, instance number)

Critical Dependence Walk

=3 Og= 2 0=3

4 |4 6 3 2
(—F+—®

1 1
p(e) |WE) ce) 1

| >

wW=(A1)—-(B,1) »(C,1)—>(A2)—~(B,2)—(C,3)

(A1) = (Voilo)

Execution of (v,,1)
starts exactly when
execution of (v .l ;)
completes and (v,l,)
starts at the
beginning of the
period (time 0)

Node Selection

qc.=3

pe) V() c(e) 1

>
|

If W is a critical walk,
with t(v,,l)+d =T, then
the only way to obtain
graph with T"' < T is by
Increasing r(v,)).

W= (A1)—(B,1)—>(C,1)>(A,2) =>(B,2) >(C,2) >A,3)

(A,3) = (Vyl)

Retimed Graph

p(e) V() c(e) 2

>
|

W= (A2)—(B,1)—(C,1) —=(A,3) =(B,2) -+(C,3)

In this example the
length of W has been
reduced after the
retiming operation.

Maximum Length Walk
Computation

proc get_t(v,k,r)

if (k<1) then
return —d(v);

fi;

if (f[v,k] # —1) then
return f[v,k];

fi;

maxt +— —1;

for each (u,v) € E

[I—.’(-C(rmpf)(;;;-(u,v)-l;
1 <get_t(u,l)+d(u);
1f (maxt <t;) then
maxt <ty ;
fi;
endfor;
t[v, k] <= maxt;
return f[v,k];

» Execution of (v,l) cannot start
before execution of (v_,I.,) has
finished

e Computing the arrival time of
each walk starting from the last
Instance of each node

* Dynamic programming
algorithm (memory function)

Termination Conditions

e It IS proven that the algorithm will always find a
basic optimal solution, I.e. in the solution there
will exist v such that r(v) < g(v)

 Following from the above condition and from
the conditions that can trigger an r change:
(Wvir(v) <2-qv-|V])

If any of these conditions are violated, the algorithm
cannot improve the best solution found thus far.

First Version of the Algorithm

* Finds last node of a critical walk for which t(v 1)+d =T
 Increments r(v,) (r'(v,) =r(v,) +1)

 Recomputes arrival times for the nodes using the
dynamic programming algorithm

e Stores solution iIf T' < T

« Continues this process until any of the termination
conditions are satisfied

« Worst-case complexity O(|V|®|E|q,,.?)

Improved Version

 First version changes the r(v) of one node by 1
and then tries to find critical walk again

— guarantees that the edge weight will never
become negative, but

— for each r change, arrival times have to be
recomputed
* Improved version relaxes the non-negativity

constraint for edges, and does more than one
change In each iteration

» Mechanism can be used to validate additional
constraints for edges

Improved Version

e Maintains two gueues:
 First queue holds the nodes, which require

an r-value

Increase In order for a potential

reduction of T to occur
e Second queue holds edges with negative

weights. T

ne r-value of the head of each

edge need

S to be Iincreased, so that the non-

negativity constraint is satisfied

e Arrival times are recomputed only after
gueues are empty (all necessary r-value
Increases have occurred)

Execution Snapshot 1

r°(A) =0 r(A) =0 t;(A,ga) =2

r°(A) =0 r(A) =0 tf(A,qA) =2 r°(B) =0 I'(B) =0 tf(B,qB) =3 W:E4—)A16—)Bl
r°B)=0 r(B)=0 t(B,gg) =3 r°(C)=1r(C)=1 t(C,gc) =2

r°(C)=1 r(C)=1 t(C,qc) =2 r°’(D) =0 r(D) =0 t(D,qp) = 3

r°’(D)=0 r(D)=0 t(D,qp) =3 °(E)=4 r(E) =4 t(E,qe) = 1

I’O(E) =0 I’(E) =3 tf(E,qE) =4 W:C1—>)D1-—)E4 rO(F) =0 r(F) =0 tf(F,qF) =2

r°(F)=0 r(F)=0 t(F,qr) =2 Toep=3 Q1={B} Q2={}

Taep=4 Q1={E} Q2={}

r’(A) =0
r°B)=0
r°(C)=1
r°(D) =0
r’(E) = 4
r°(F) =0

Execution Snapshot 2

r(A) =0 t(Aga) =2

r(B)=1 t(B,gs) =1

r(C) =1 tf(C,qC) =3 W =B,—»C;
I‘(D) =0 tf(D,qD) =4 W=B,—->C;—>D;
r(E) =4 t(Eqe)=1

r(F)=0 t(Fgr)=2

Taep=3 Q1={CD} Q2={}

r’(A)=0
r°(B)=0
r’(C)=1
r’(D)=0
r°(E)=4
r°’(F)=0

Tstep: 3

r(A) =0 tf(A,qA):S W=C;—>D;—>Es—>A;
r(B)=1 t(B,gs)=1

r(C) =2 t(C,qc)=2

r(D) =1 tf(D,qD)=3 W =C;->D;

r(E) =4 tf(E,qE):4 W =C;-»>D;—E,
r(F) =0 tf(F,qF):5 W =Ci-»>D;—>F;

Q1= _
(aDEF =11

Experimental Results (gnx=32)

Graph T execution time (sec)
O’Neil’s | First [Improved O’Neil’s First Improved

s27 459 416 416 1.924 0.012 0.060

5208.1 834 834 834 2m:50.537 1.287 0.049
5298 1083 1027 1027 55m:30.897 2.696 0.095
5344 2534 2468 2468 70m:29.472 3.457 0.415
5349 1503 1415 1415 8m: 18.343 4.140 0.257
s382 1312 1273 1273 19m:29.061 5.261 0.344
5386 938 806 806 1m:40.775 2.733 0.129
s444 1185 888 888 48m:18.215 2.825 0.191
$526 2161 2007 2007 120m:00.000 7.796 0.479
5641 690 610 610 54.7758 9.837 0.534
§820 1594 1573 1573 46m:26.437 11.805 0.622
5953 1776 1776 1776 Sm:26.620 16.650 0.919

Modeling Environment

RERLINWNKQ

O—0Owm>
olo|luo|w N

Experimental Results

T Execution
Ecr Initial | Fmal | Time (sec)
s27 368 351 0.005
s208.1 | 1035 852 0.020
5298 1052 742 0.045 *
5344 1062 928 0.164
5349 933 833 0.016
5382 951 908 0.021
5386 745 650 0.051
5444 902 882 0.027
5526 1690 | 1690 0.009 *
5641 694 665 0.011
§820 1264 | 1219 0.032
5933 1558 1558 0.010

Summary

* Presented two new algorithms for
retiming SDF graphs

 Algorithms aim at minimizing the cycle
length of the SDF and are optimal

* Improved version is orders of magnitude
faster than other approaches

Thank you

	Retiming for Synchronous Data Flow Graphs
	Outline
	Synchronous Dataflow Graphs
	Blocking vs Non-blocking Schedule
	Retiming SDF Graphs
	Example
	Example - retimed
	Previous Approach
	Our Approach
	Dependence Walk
	Critical Dependence Walk
	Node Selection
	Retimed Graph
	Maximum Length Walk Computation
	Termination Conditions
	First Version of the Algorithm
	Improved Version
	Improved Version
	Execution Snapshot 1
	Execution Snapshot 2
	Experimental Results (qmax=32)
	Modeling Environment
	Experimental Results
	Summary
	Thank you

