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Synchronous Dataflow Graphs
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Blocking vs Non—blocking
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Retiming SDF Graphs

« DSP applications with constant consumption and
production data rates and predictable execution time
are modeled by SDF graphs

« Some applications whose behavior is determined at
run-time or that share resources with high-priority tasks
are normally executed on programmable cores

* When data dependencies exist between SDF actors
and tasks executed on programmable cores, a non-
blocking schedule may not be feasible



Example

diq
Al2|2
B 3|3
Cl|5|2
pe) W) c(e)
| >
CPU| B1 C2 CPU B1 C2 CPU | B1 c2
Al | B2 Al | B2 Al | B2
A2 | B3 A2 | B3 A2 | B3
C1 C1 C1
T=8

A

\4




Example — retimed
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Previous Approach

® T. O'Neil, E. Sha; “Retiming Synchronous Dataflow Graphs to Reduce
Execution Time”;IEEE Transaction on Signal Processing, Oct 2001

*Only check whether a given cycle time is feasible
«Computing the maximum path in the EHG (Equivalent
Homogenous Graph)

— a distinct node for each node instance
— each token transferred on a separate edge

— p(e)=c(e)=1
— number of edges £, ;g A(v) c(u,v)

« Selection of node v, whose r(v) will be increased, Is
based on heuristic

*Termination criteria is not provable



Our Approach

e Computation of max length is done on the SDF graph
— avoiding expensive generation of EHG

— avoiding computation for nodes that cannot affect the max
length path

» Selection of nodes is justified based on properties

e Algorithm reduces cycle time at each iteration or
proves that the cycle time of the iteration is optimal

« Upon termination an optimal solution is generated



Dependence Walk
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Critical Dependence Walk
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Execution of (v,,1)
starts exactly when
execution of (v .l ;)
completes and (v,l,)
starts at the
beginning of the
period (time 0)



Node Selection
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If W is a critical walk,
with t(v,,l )+d =T, then
the only way to obtain
graph with T"' < T is by
Increasing r(v,)).

W= (A1)—(B,1)—>(C,1)>(A,2) =>(B,2) >(C,2) >A,3)

(A,3) = (Vyl)



Retimed Graph
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W= (A2)—(B,1)—(C,1) —=(A,3) =(B,2) -+(C,3)

In this example the
length of W has been
reduced after the
retiming operation.



Maximum Length Walk
Computation

proc get_t(v,k,r)

if (k<1) then
return —d(v);

fi;

if (f[v,k] # —1) then
return f[v,k];

fi;

maxt +— —1;

for each (u,v) € E

[ I—.’(-C(rmpf)(;;;-(u,v)-l;
1 <get_t(u,l)+d(u);
1f (maxt <t;) then
maxt <ty ;
fi;
endfor;
t[v, k] <= maxt;
return f[v,k];

» Execution of (v,l) cannot start
before execution of (v_,I.,) has
finished

e Computing the arrival time of
each walk starting from the last
Instance of each node

* Dynamic programming
algorithm (memory function)



Termination Conditions

e It IS proven that the algorithm will always find a
basic optimal solution, I.e. in the solution there
will exist v such that r(v) < g(v)

 Following from the above condition and from
the conditions that can trigger an r change:
(Wvir(v) <2-qv-|V])

If any of these conditions are violated, the algorithm
cannot improve the best solution found thus far.



First Version of the Algorithm

* Finds last node of a critical walk for which t(v 1 )+d =T
 Increments r(v,) (r'(v,) =r(v,) +1)

 Recomputes arrival times for the nodes using the
dynamic programming algorithm

e Stores solution iIf T' < T

« Continues this process until any of the termination
conditions are satisfied

« Worst-case complexity O(|V|®|E|q,,.? )



Improved Version

 First version changes the r(v) of one node by 1
and then tries to find critical walk again

— guarantees that the edge weight will never
become negative, but

— for each r change, arrival times have to be
recomputed
* Improved version relaxes the non-negativity

constraint for edges, and does more than one
change In each iteration

» Mechanism can be used to validate additional
constraints for edges



Improved Version

e Maintains two gueues:
 First queue holds the nodes, which require

an r-value

Increase In order for a potential

reduction of T to occur
e Second queue holds edges with negative

weights. T

ne r-value of the head of each

edge need

S to be Iincreased, so that the non-

negativity constraint is satisfied

e Arrival times are recomputed only after
gueues are empty (all necessary r-value
Increases have occurred)



Execution Snapshot 1

r°(A) =0 r(A) =0 t;(A,ga) =2

r°(A) =0 r(A) =0 tf(A,qA) =2 r°(B) =0 I'(B) =0 tf(B,qB) =3 W:E4—)A16—)Bl
r°B)=0 r(B)=0 t(B,gg) =3 r°(C)=1r(C)=1 t(C,gc) =2

r°(C)=1 r(C)=1 t(C,qc) =2 r°’(D) =0 r(D) =0 t(D,qp) = 3

r°’(D)=0 r(D)=0 t(D,qp) =3 °(E)=4 r(E) =4 t(E,qe) = 1

I’O(E) =0 I’(E) =3 tf(E,qE) =4 W:C1—>)D1-—)E4 rO(F) =0 r(F) =0 tf(F,qF) =2

r°(F)=0 r(F)=0 t(F,qr) =2 Toep=3 Q1={B} Q2={}

Taep=4 Q1={E} Q2={}



r’(A) =0
r°B)=0
r°(C)=1
r°(D) =0
r’(E) = 4
r°(F) =0

Execution Snapshot 2

r(A) =0 t(Aga) =2

r(B)=1 t(B,gs) =1

r(C) =1 tf(C,qC) =3 W =B,—»C;
I‘(D) =0 tf(D,qD) =4 W=B,—->C;—>D;
r(E) =4 t(Eqe)=1

r(F)=0 t(Fgr)=2

Taep=3 Q1={CD} Q2={}

r’(A)=0
r°(B)=0
r’(C)=1
r’(D)=0
r°(E)=4
r°’(F)=0

Tstep: 3

r(A) =0 tf(A,qA):S W=C;—>D;—>Es—>A;
r(B)=1 t(B,gs)=1

r(C) =2 t(C,qc)=2

r(D) =1 tf(D,qD)=3 W =C;->D;

r(E) =4 tf(E,qE):4 W =C;-»>D;—E,
r(F) =0 tf(F,qF):5 W =Ci-»>D;—>F;

Q1= _
(aDEF =11



Experimental Results (gnx=32)

Graph T execution time (sec)
O’Neil’s | First [ Improved O’Neil’s First Improved

s27 459 416 416 1.924 0.012 0.060

5208.1 834 834 834 2m:50.537 1.287 0.049
5298 1083 1027 1027 55m:30.897 2.696 0.095
5344 2534 2468 2468 70m:29.472 3.457 0.415
5349 1503 1415 1415 8m: 18.343 4.140 0.257
s382 1312 1273 1273 19m:29.061 5.261 0.344
5386 938 806 806 1m:40.775 2.733 0.129
s444 1185 888 888 48m:18.215 2.825 0.191
$526 2161 2007 2007 120m:00.000 7.796 0.479
5641 690 610 610 54.7758 9.837 0.534
§820 1594 1573 1573 46m:26.437 11.805 0.622
5953 1776 1776 1776 Sm:26.620 16.650 0.919




Modeling Environment

RERLINWNKQ

O—0Owm>
olo|luo|w N




Experimental Results

T Execution
Ecr Initial | Fmal | Time (sec)
s27 368 351 0.005
s208.1 | 1035 852 0.020
5298 1052 742 0.045 *
5344 1062 928 0.164
5349 933 833 0.016
5382 951 908 0.021
5386 745 650 0.051
5444 902 882 0.027
5526 1690 | 1690 0.009 *
5641 694 665 0.011
§820 1264 | 1219 0.032
5933 1558 1558 0.010




Summary

* Presented two new algorithms for
retiming SDF graphs

 Algorithms aim at minimizing the cycle
length of the SDF and are optimal

* Improved version is orders of magnitude
faster than other approaches



Thank you
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