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Synchronous Dataflow Graphs
• Each node represents a 
computation process

– constant production and 
consumption rate
– executed a specific number 
of times during each 
complete cycle

• Edge represents a 
channel between two 
processes

– FIFO protocol for tokens
– initial number of tokens on 
edge (delays)
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Blocking vs Non-blocking 
Schedule

Example of
a blocking
schedule

Example of a
non-blocking

schedule

A1
B1

B2 C1 A1
B1

B2 C1 A1
B1

B2 C1

cycle 1 cycle 3cycle 2

A1
B1

B2 C1
A1
B1

B2 C1
A1
B1

B2 C1

cycle 1
cycle 2

cycle 3

A B C36 1 2

1 1

3

2

qA=1 qB=2 qC=1

p(e) c(e)w(e)



Retiming SDF Graphs

• DSP applications with constant consumption and 
production data rates and predictable execution time 
are modeled by SDF graphs

• Some applications whose behavior is determined at 
run-time or that share resources with high-priority tasks 
are normally executed on programmable cores

• When data dependencies exist between SDF actors 
and tasks executed on programmable cores, a non-
blocking schedule may not be feasible



Example
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Example - retimed
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Previous Approach
• T. O’Neil, E. Sha; “Retiming Synchronous Dataflow Graphs to Reduce 
Execution Time”;IEEE Transaction on Signal Processing, Oct 2001

•Only check whether a given cycle time is feasible
•Computing the maximum path in the EHG (Equivalent 
Homogenous Graph)

– a distinct node for each node instance
– each token transferred on a separate edge
– p(e)=c(e)=1
– number of edges Σ(u,v) in E q(v) c(u,v)

• Selection of node v, whose r(v) will be increased, is 
based on heuristic 
•Termination criteria is not provable



Our Approach

• Computation of max length is done on the SDF graph
– avoiding expensive generation of EHG
– avoiding computation for nodes that cannot affect the max 
length path

• Selection of nodes is justified based on properties
• Algorithm reduces cycle time at each iteration or 
proves that the cycle time of the iteration is optimal
• Upon termination an optimal solution is generated



Dependence Walk
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(node name, instance number)

Execution of (vi,li) can 
start only after 
execution of (vi-1,li-1)
has been completed.



Critical Dependence Walk
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Execution of (vi,li)
starts exactly when 
execution of (vi-1,li-1)
completes and (v0,l0) 
starts at the 
beginning of the 
period (time 0)

(A,1) = (v0,l0)



Node Selection

If W is a critical walk, 
with t(vn,ln)+dn=T, then 
the only way to obtain 
graph with T’ < T is by 
increasing r(vn).
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Retimed Graph

In this example the 
length of W has been 
reduced after the 
retiming operation.
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Maximum Length Walk 
Computation

• Execution of (vi,li) cannot start 
before execution of (vi-1,li-1) has 
finished
• Computing the arrival time of 
each walk starting from the last 
instance of each node
• Dynamic programming 
algorithm (memory function)



Termination Conditions

• It is proven that the algorithm will always find a 
basic optimal solution, i.e. in the solution there 
will exist v such that r(v) < q(v)  
• Following from the above condition and from 
the conditions that can trigger an r change: 

If any of these conditions are violated, the algorithm 
cannot improve the best solution found thus far.



First Version of the Algorithm

• Finds last node of a critical walk for which t(vn,ln)+dn=T
• Increments r(vn) (r’(vn) = r(vn) +1)
• Recomputes arrival times for the nodes using the 
dynamic programming algorithm
• Stores solution if T’ < T
• Continues this process until any of the termination 
conditions are satisfied
• Worst-case complexity O(|V|3|E|qave

2 ) 



Improved Version

• First version changes the r(v) of one node by 1 
and then tries to find critical walk again

– guarantees that the edge weight will never 
become negative, but
– for each r change, arrival times have to be 
recomputed

• Improved version relaxes the non-negativity 
constraint for edges, and does more than one 
change in each iteration
• Mechanism can be used to validate additional 
constraints for edges



Improved Version

• Maintains two queues:
• First queue holds the nodes, which require 
an r-value increase in order for a potential 
reduction of T to occur
• Second queue holds edges with negative 
weights. The r-value of the head of each 
edge needs to be increased, so that the non-
negativity constraint is satisfied

• Arrival times are recomputed only after 
queues are empty (all necessary r-value 
increases have occurred)



Execution Snapshot 1

A B C D E

F

16

1

16 16 161

41

1 1 14

1

11

1

4

ro(A) = 0 r(A) = 0 tf(A,qA) = 2  
ro(B) = 0 r(B) = 0 tf(B,qB) = 3 W=E4→A16→B1 
ro(C) = 1 r(C) = 1 tf(C,qC) = 2  
ro(D) = 0 r(D) = 0 tf(D,qD) = 3  
ro(E) = 4 r(E) = 4 tf(E,qE) = 1  
ro(F) = 0 r(F) = 0 tf(F,qF) = 2  
Tstep= 3 Q1={B} Q2 = { }  

 

A B C D E

F

4

16

1

16 16 161

41

1 1 14

1

11

1

3

ro(A) = 0 r(A) = 0 tf(A,qA) = 2  
ro(B) = 0 r(B) = 0 tf(B,qB) = 3  
ro(C) = 1 r(C) = 1 tf(C,qC) = 2  
ro(D) = 0 r(D) = 0 tf(D,qD) = 3  
ro(E) = 0 r(E) = 3 tf(E,qE) = 4 W=C1→D1→E4
ro(F) = 0 r(F) = 0 tf(F,qF) = 2  
Tstep= 4 Q1 ={E} Q2 = { }  

 



Execution Snapshot 2
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Experimental Results (qmax=32)



Modeling Environment
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Experimental Results
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Summary

• Presented two new algorithms for 
retiming SDF graphs

• Algorithms aim at minimizing the cycle 
length of the SDF and are optimal

• Improved version is orders of magnitude 
faster than other approaches



Thank you
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