-
‘

A PHILIPS

A Run-Time Memory Protection
Methodology

Udaya Seshua, Nagaraju Bussa*, Bart Vermeulen
NXP Semiconductors, *Philips Research

12t Asian and South Pacific Design Automation Conference 2007
January 25, 2007, Yokohama, Japan

Agenda

e Introduction

« Motivation

 Debugging Run-Time Memory Corruption
* Prior Work

 Proposed Debug Methodology
— Hardware Design
— Software Design

 Experimental Results
e Conclusion

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 2

Introduction

« System chips are becoming more and more complex
— More transistors per mm?, customer requirements,
embedded processors & SW, mixed processes...

Transistors per die Code Size Evolution of High End TV Software
108 - i . - 100M [[|)’64000 7
=@= CPU . _ == TV ROM size ﬁzooo
1B |~ == Memory TR ok T
] LiLE M FOWEN %7000
Frequency el = i e Itanium m oM
100M [— : 7 ‘ : ;(1096
Pentim o4 A5000
Pendumdll " e
lOM e B bt o 1M J_UL4
ﬁlz
M /56
/
100k [100k /64
;)’32
10K)/16
1K /
10k /8
1k gt @ - yc
i P ¢
1K —I/L
1970 1975 1980 1985 1990 1995 2000 2005 2010 1978 1982 1986 1990 1994 1998 2002 2006 2009
source: Intel, ITRS roadmap source Rob van Ommering, PRLE Informatica Colloquium, October 2005

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 3

.
Introduction

« Extensive pre-silicon verification Effort as % of Project Time
— Formal Verification
. . Design Verification
— Simulation
. L 53% 47%
— Timing Verification
— Emulation
— DRC, LVS ...
source: Collet International Research Inc.
* No guarantee that all HW and SW errors Industry Silicon Spins
100%
are removed before silicon o T el
— Too many use cases 80%
— Mandatory trade-off between amount 70%
. 60%
of detail and speed 50%
40%
. 30%
« Debugging embedded software on J0%%)
prototype silicon is a necessity 10%
— Find remaining SW and HW errors I TS

source: Numetrics Management Systems, Inc.

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 4

Motivation

* In any application nearly 70% of code deals with memory transfers
 Memory-related bugs are among the most prevalent and difficult to

catch
— particularly in applications written in an unsafe language such as

C/C++
* In an embedded system, a single memory access error can cause an

application to behave unpredictably or even a delayed crash
« A good debug infrastructure capable of locating memory-related bugs

quickly is key to reducing the effort spent on software debug

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007

Debugging Run-Time Memory Corruption

* A single incorrect memory access can
crash an application and/or threaten its security

Processor

2. Access data

1. Fetch Pointer Value referenced by pointer

Memory

0x1234 Data

0x1234

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 6

Debugging Run-Time Memory Corruption

* A single incorrect memory access can
crash an application and/or threaten its security

-
2. Access unintended data

_ referenced by corrupted pointer
1. Fetch Pointer Value

. Memory
Ox1234 Data Unintended
0x1340 Data
T
Corrupted Pointer caused 0x1234 0x1340

by bug or security breach

 How do we detect these errors efficiently at run-time?

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 7

Prior Work

Mostly software-only methods (“Purify, xGCC and the like™)
— High performance penalty (5-10x not uncommon)
— Not acceptable in real-time, embedded systems

Avallable HW support often used on ad-hoc basis
— a Memory Management Unit
— a Processor data breakpoint

“Whatever is available can and will be used!”
— Even if it wasn’t designed for this purpose

Results in long and unpredictable debug times
— Slipping deadlines, market and possibly customer loss

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 8

Proposed Debug Methodology

o Structured Integrated Hardware/Software Approach
— Monitor memory accesses of an application
* Flag invalid accesses for QoS, security or debug

— Perform frequently recurring tasks in hardware
 Compare memory addresses with valid regions

— Keep configurability in software for flexibility
« Configure valid regions

 Make optimal trade-off between

— Hardware cost, i.e. silicon area
— Software cost, i.e. performance drop

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 9

e —
Proposed Debug Methodology

Run-Time Memory Protection Architecture

Peripheral Peripheral

Processor 1 N

bus (e.g. AXI)

Reg _memory access
Prot violation detected

Mo

'

signal debugger SW

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 10

Memory
Interface

Proposed Debug Methodology

RPM Hardware Architecture

RPU controller

i heap RPU 1

data_in
address
data_out
heap_in
< Bus stack_fallback_n
Adapter
rpu_mode
read
rpu_data
write

-1; stack RPU M

stack _in

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007

11

T
Proposed Debug Methodology

Heap RPU Hardware Block Diagram

cascade_in

data

mode

!
cascade out

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 12

Proposed Debug Methodology

RPM Hardware Design Flow

Benchmark
applications

N

Memory
Usage
Analysis

<?xmlversion = "1.0"?>

<rpu_slave>
<name>rdt_rpu32_slave</name>
<size>32</size>
<rpu><type>heap</type><max_size>8</max_size><bits>256</bits></rpu>
<rpu><type>heap</type><max_size>6</max_size><bits>64</bits></rpu>
<rpu><type>heap</type><max_size>9</max_size><bits>400</bits></rpu>
<rpu><type>heap</type><max_size>5</max_size><bits>32</bits></rpu>
<rpu><type>heap</type><max_size>7</max_size><bits>128</bits></rpu>
<rpu><type>stack</type><max_size>8</max_size><bits>200</bits></rpu>
<rpu><type>stack</type><max_size>7</max_size><bits>128</bits></rpu>
<rpu><type>heap</type><max_size>10</max_size><bits>786</bits></rpu>

RPU Design <rpu><type>heap</type><max_size>5</max_size><bits>32</bits></rpu>
o <rpu><type>heap</type><max_size>10</max_size><bits>600</bits></rpu>
Algorithm <rpu><type>heap</type><max_size>10</max_size><bits>800</bits></rpu>

</rpu_slave>

XML desciption of required
RPU components

Memory statistics g:l

IP generation

& instantiation

N

RPU
module

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 13

T
Proposed Debug Methodology

Hardware Features

e Features

— Adds fine-grain memory protection
 Complementary to MMU'’s page-based protection

— Reconfigurable at run-time

— Area-efficient

— Scalable

— Fits any (industry-)standard bus interface
« AXI, OCP, DTL, MTL ...

* Options
— Direct bus snoop < Address sent by SW
— Generate interrupt << Valid query in SW
— Complementary IEEE 1149.1 (JTAG) access

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 14

Proposed Debug Methodology

Software Design Flow

« Application compile time
— ldentify regions to protect
per thread using the compiler

— Instrument application

 Application run-time

— Memory region violations
detected by RPU hardware

—Handling is done by
 CPU software, and/or
e Debugger software

New SoC Application

O

Application
instrumentation
by compiler

id=1;
ainQ)
{
T tialize(0)

Processor
RPU ’
module

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 15

Proposed Debug Methodology

Software APl Example

main()
rpus_initialize();
funcl();
func2();
main()
funclQ; Iuncl()
} HUAEAQ)E id = rpu_id++;
p = malloc(127);
rpus_heap_enable(127,p);
funclQ int a[10]; i
= malloc(127); rpus_stack_enable(10,a, id);
?nt a[lO];(% int b[10]; _
int b[10]: rpus_stack enable(10,b,id);
free(p); free(p);
a[10]=0- (: 1 rpus_hﬁapEdlsableEp)io)
i rpus_check_access(a+ ;
} ompiier a[1070-
func2Q) rpus_stack disable(id);
by
int a[10];
int b[10]: func2()
id = rpu_id++;
int a[10];
rpus_stack enable(10,a,id);
Int b[10];
rpus_stack enable(10,b,id);
rpus_stack disable(id);
}

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 16

Experimental Results

« Modified open-source GCC compiler on Linux

« ARM Cross-compiler

« MiBench (http://www.eecs.umich.edu/mibench/)
— Commercially representative embedded benchmarks
— Automotive, Consumer, Network, Office, Security,
and Telecommunication

e Measured:
— Software performance drop
— Minimum number of required RPUs

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 17

Experimental Results

Application Speed per Benchmark

B Mudflap B RPM (no snooping) M RPM (snooping)

100%

90%

100%)

80% 1

70%

60%

50% -

40%

Application Speed (Original

A S Benchmark

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 18

Experimental Results

RPU Hardware Cost

B Mudflap B RPM (no snooping) M RPM (snooping)

2.0%

1.8%

1.6%

100%)

1.4%

1.2%

1.0%

0.8%

0.6%

0.4%

Hardware Area (CPU

0.2%

0.0% -

Benchmark

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 19

Conclusions

 Run-Time Memory Protection Architecture
— Effective against memory corruption

— Efficient through
* Re-use of existing RPU hardware
» Optimal trade-off between HW and SW cost

 We developed tool support for
— Memory allocation & access analysis
— Hardware and software trade-off
— RPU hardware design
— Application instrumentation

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 20

Thank You

Udaya Seshua, “A Run-Time Memory Protection Methodology”, 12t Asian and South Pacific Design Automation Conference 2007, January 25th, 2007 21

	A Run-Time Memory Protection Methodology
	Agenda
	Introduction
	Introduction
	Motivation
	Debugging Run-Time Memory Corruption
	Debugging Run-Time Memory Corruption
	Prior Work
	Proposed Debug Methodology
	Proposed Debug Methodology�Run-Time Memory Protection Architecture
	Proposed Debug Methodology�RPM Hardware Architecture
	Proposed Debug Methodology�Heap RPU Hardware Block Diagram
	Proposed Debug Methodology�RPM Hardware Design Flow
	Proposed Debug Methodology�Hardware Features
	Proposed Debug Methodology�Software Design Flow
	Proposed Debug Methodology�Software API Example
	Experimental Results
	Experimental Results�Application Speed per Benchmark
	Experimental Results�RPU Hardware Cost
	Conclusions
	Thank You

