

A Run-Time Memory Protection Methodology

Udaya Seshua, Nagaraju Bussa*, Bart Vermeulen NXP Semiconductors, *Philips Research

12th Asian and South Pacific Design Automation Conference 2007 January 25, 2007, Yokohama, Japan

Agenda

- Introduction
- Motivation
- Debugging Run-Time Memory Corruption
- Prior Work
- Proposed Debug Methodology
 - Hardware Design
 - Software Design
- Experimental Results
- Conclusion

Introduction

- System chips are becoming more and more complex
 - More transistors per mm², customer requirements, embedded processors & SW, mixed processes...

Introduction

- Extensive pre-silicon verification
 - Formal Verification
 - Simulation
 - Timing Verification
 - Emulation
 - DRC, LVS ...
- No guarantee that all HW and SW errors are removed before silicon
 - Too many use cases
 - Mandatory trade-off between amount of detail and speed
- Debugging embedded software on prototype silicon is a necessity
 - Find remaining SW and HW errors

Effort as % of Project Time

source: Collet International Research Inc.

Industry Silicon Spins

source: Numetrics Management Systems, Inc.

Motivation

- In any application nearly 70% of code deals with memory transfers
- Memory-related bugs are among the most prevalent and difficult to catch
 - particularly in applications written in an unsafe language such as C/C++
- In an embedded system, a single memory access error can cause an application to behave unpredictably or even a delayed crash
- A good debug infrastructure capable of locating memory-related bugs quickly is key to reducing the effort spent on software debug

Debugging Run-Time Memory Corruption

 A single incorrect memory access can crash an application and/or threaten its security

Debugging Run-Time Memory Corruption

 A single incorrect memory access can crash an application and/or threaten its security

How do we detect these errors efficiently at run-time?

Prior Work

- Mostly software-only methods ("Purify, xGCC and the like")
 - High performance penalty (5-10x not uncommon)
 - Not acceptable in real-time, embedded systems
- Available HW support often used on ad-hoc basis
 - a Memory Management Unit
 - a Processor data breakpoint
- "Whatever is available can and will be used!"
 - Even if it wasn't designed for this purpose
- Results in long and unpredictable debug times
 - Slipping deadlines, market and possibly customer loss

- Structured Integrated Hardware/Software Approach
 - Monitor memory accesses of an application
 - Flag invalid accesses for QoS, security or debug
 - Perform frequently recurring tasks in hardware
 - Compare memory addresses with valid regions
 - Keep configurability in software for flexibility
 - Configure valid regions
- Make optimal trade-off between
 - Hardware cost, i.e. silicon area
 - Software cost, i.e. performance drop

Run-Time Memory Protection Architecture

RPM Hardware Architecture

Heap RPU Hardware Block Diagram

RPM Hardware Design Flow

& instantiation

Hardware Features

Features

- Adds fine-grain memory protection
 - Complementary to MMU's page-based protection
- Reconfigurable at run-time
- Area-efficient
- Scalable
- Fits any (industry-)standard bus interface
 - AXI, OCP, DTL, MTL ...

Options

- Direct bus snoop ⇔ Address sent by SW
- Generate interrupt ⇔ Valid query in SW
- Complementary IEEE 1149.1 (JTAG) access

Software Design Flow

- Application compile time
 - Identify regions to protect per thread using the compiler
 - Instrument application
- Application run-time
 - Memory region violations detected by RPU hardware
 - Handling is done by
 - CPU software, and/or
 - Debugger software

New SoC Application

Application instrumentation by compiler

Software API Example

```
main()
  func1();
  func2();
func1()
  p = malloc(127);
  int a[10];
  int b[10];
  free(p);
  a[10]=0;
func2()
  int a[10];
  int b[10];
```



```
static int rpu id=1;
main()
  rpus initialize();
  func1();
  func2();
func1()
  id = rpu id++;
  p = malloc(127);
  rpus heap enable(127,p);
  int a[10];
  rpus_stack_enable(10,a,id);
  int b[10];
  rpus stack enable(10,b,id);
  free(p);
  rpus heap disable(p);
  rpus check access(a+10);
  a[10]=0;
  rpus stack disable(id);
func2()
  id = rpu id++;
  int a[10];
  rpus stack enable(10,a,id);
  Int b[10];
  rpus stack enable(10,b,id);
  rpus stack disable(id);
```

Experimental Results

- Modified open-source GCC compiler on Linux
- ARM Cross-compiler
- MiBench (http://www.eecs.umich.edu/mibench/)
 - Commercially representative embedded benchmarks
 - Automotive, Consumer, Network, Office, Security, and Telecommunication
- Measured:
 - Software performance drop
 - Minimum number of required RPUs

Experimental Results

Application Speed per Benchmark

Experimental Results

RPU Hardware Cost

Conclusions

- Run-Time Memory Protection Architecture
 - Effective against memory corruption
 - Efficient through
 - Re-use of existing RPU hardware
 - Optimal trade-off between HW and SW cost
- We developed tool support for
 - Memory allocation & access analysis
 - Hardware and software trade-off
 - RPU hardware design
 - Application instrumentation

Thank You