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Introduction

« System chips are becoming more and more complex
— More transistors per mm?, customer requirements,
embedded processors & SW, mixed processes...
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source: Intel, ITRS roadmap source Rob van Ommering, PRLE Informatica Colloquium, October 2005
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Introduction

« Extensive pre-silicon verification Effort as % of Project Time
— Formal Verification
. . Design Verification
— Simulation
. L 53% 47%
— Timing Verification
— Emulation
— DRC, LVS ...
source: Collet International Research Inc.
* No guarantee that all HW and SW errors Industry Silicon Spins
100%
are removed before silicon o T el
— Too many use cases 80%
— Mandatory trade-off between amount 70%
. 60%
of detail and speed 50%
40%
. 30%
« Debugging embedded software on J0%%)
prototype silicon is a necessity 10%
— Find remaining SW and HW errors I TS

source: Numetrics Management Systems, Inc.
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Motivation

* In any application nearly 70% of code deals with memory transfers
 Memory-related bugs are among the most prevalent and difficult to

catch
— particularly in applications written in an unsafe language such as

C/C++
* In an embedded system, a single memory access error can cause an

application to behave unpredictably or even a delayed crash
« A good debug infrastructure capable of locating memory-related bugs

quickly is key to reducing the effort spent on software debug
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Debugging Run-Time Memory Corruption

* A single incorrect memory access can
crash an application and/or threaten its security

Processor

2. Access data

1. Fetch Pointer Value referenced by pointer

Memory

0x1234 Data

0x1234
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Debugging Run-Time Memory Corruption

* A single incorrect memory access can
crash an application and/or threaten its security

-
2. Access unintended data

_ referenced by corrupted pointer
1. Fetch Pointer Value

. Memory
Ox1234 Data Unintended
0x1340 Data
T
Corrupted Pointer caused 0x1234 0x1340

by bug or security breach

 How do we detect these errors efficiently at run-time?
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Prior Work

Mostly software-only methods (“Purify, xGCC and the like™)
— High performance penalty (5-10x not uncommon)
— Not acceptable in real-time, embedded systems

Avallable HW support often used on ad-hoc basis
— a Memory Management Unit
— a Processor data breakpoint

“Whatever is available can and will be used!”
— Even if it wasn’t designed for this purpose

Results in long and unpredictable debug times
— Slipping deadlines, market and possibly customer loss
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Proposed Debug Methodology

o Structured Integrated Hardware/Software Approach
— Monitor memory accesses of an application
* Flag invalid accesses for QoS, security or debug

— Perform frequently recurring tasks in hardware
 Compare memory addresses with valid regions

— Keep configurability in software for flexibility
« Configure valid regions

 Make optimal trade-off between

— Hardware cost, i.e. silicon area
— Software cost, i.e. performance drop
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Proposed Debug Methodology

Run-Time Memory Protection Architecture

Peripheral Peripheral

Processor 1 N

bus (e.g. AXI)

Reg _memory access
Prot violation detected

Mo

'

signal debugger SW
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Proposed Debug Methodology

RPM Hardware Architecture

RPU controller

i heap RPU 1

data_in
address
data_out
heap_in
< Bus stack_fallback_n
Adapter
rpu_mode
read
rpu_data
write

-1; stack RPU M

stack _in
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Proposed Debug Methodology

Heap RPU Hardware Block Diagram

cascade_in

data

mode

!
cascade out
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Proposed Debug Methodology

RPM Hardware Design Flow

Benchmark
applications

N

Memory
Usage
Analysis

<?xmlversion = "1.0"?>

<rpu_slave>
<name>rdt_rpu32_slave</name>
<size>32</size>
<rpu><type>heap</type><max_size>8</max_size><bits>256</bits></rpu>
<rpu><type>heap</type><max_size>6</max_size><bits>64</bits></rpu>
<rpu><type>heap</type><max_size>9</max_size><bits>400</bits></rpu>
<rpu><type>heap</type><max_size>5</max_size><bits>32</bits></rpu>
<rpu><type>heap</type><max_size>7</max_size><bits>128</bits></rpu>
<rpu><type>stack</type><max_size>8</max_size><bits>200</bits></rpu>
<rpu><type>stack</type><max_size>7</max_size><bits>128</bits></rpu>
<rpu><type>heap</type><max_size>10</max_size><bits>786</bits></rpu>

RPU Design <rpu><type>heap</type><max_size>5</max_size><bits>32</bits></rpu>
o <rpu><type>heap</type><max_size>10</max_size><bits>600</bits></rpu>
Algorithm <rpu><type>heap</type><max_size>10</max_size><bits>800</bits></rpu>

</rpu_slave>

XML desciption of required
RPU components

Memory statistics g:l

IP generation

& instantiation

N

RPU
module
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Proposed Debug Methodology

Hardware Features

e Features

— Adds fine-grain memory protection
 Complementary to MMU'’s page-based protection

— Reconfigurable at run-time

— Area-efficient

— Scalable

— Fits any (industry-)standard bus interface
« AXI, OCP, DTL, MTL ...

* Options
— Direct bus snoop < Address sent by SW
— Generate interrupt << Valid query in SW
— Complementary IEEE 1149.1 (JTAG) access
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Proposed Debug Methodology

Software Design Flow

« Application compile time
— ldentify regions to protect
per thread using the compiler

— Instrument application

 Application run-time

— Memory region violations
detected by RPU hardware

—Handling is done by
 CPU software, and/or
e Debugger software

New SoC Application

O

Application
instrumentation
by compiler

id=1;
ainQ)
{
T tialize(0)

Processor
RPU ’
module
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Proposed Debug Methodology

Software APl Example

main()
rpus_initialize();
funcl();
func2();
main()
funclQ; Iuncl()
} HUAEAQ)E id = rpu_id++;
p = malloc(127);
rpus_heap_enable(127,p);
funclQ int a[10]; i
= malloc(127); rpus_stack_enable(10,a, id);
?nt a[lO];( % int b[10]; _
int b[10]: rpus_stack enable(10,b,id);
free(p); free(p);
a[10]=0- (: 1 rpus_hﬁapEdlsableEp)io)
i rpus_check_access(a+ ;
} ompiier a[1070-
func2Q) rpus_stack disable(id);
by
int a[10];
int b[10]: func2()
id = rpu_id++;
int a[10];
rpus_stack enable(10,a,id);
Int b[10];
rpus_stack enable(10,b,id);
rpus_stack disable(id);
}
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Experimental Results

« Modified open-source GCC compiler on Linux

« ARM Cross-compiler

« MiBench (http://www.eecs.umich.edu/mibench/)
— Commercially representative embedded benchmarks
— Automotive, Consumer, Network, Office, Security,
and Telecommunication

e Measured:
— Software performance drop
— Minimum number of required RPUs
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Experimental Results

Application Speed per Benchmark

B Mudflap B RPM (no snooping) M RPM (snooping)

100%
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100%)

80% 1
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Experimental Results

RPU Hardware Cost

B Mudflap B RPM (no snooping) M RPM (snooping)

2.0%

1.8%

1.6%

100%)

1.4%

1.2%

1.0%

0.8%

0.6%

0.4%

Hardware Area (CPU

0.2%

0.0% -

Benchmark
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Conclusions

 Run-Time Memory Protection Architecture
— Effective against memory corruption

— Efficient through
* Re-use of existing RPU hardware
» Optimal trade-off between HW and SW cost

 We developed tool support for
— Memory allocation & access analysis
— Hardware and software trade-off
— RPU hardware design
— Application instrumentation
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Thank You
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