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The Optimization ProblemThe Optimization Problem



Polynomials over BitPolynomials over Bit--Vectors?Vectors?

Quadratic filter design for polynomial signal processing

y = a0 . x1
2 + a1 . x1 + b0 . x0

2 + b1 . x0 + c . x0 . x1

Coefficients/variables implemented with specific bit-
vector sizes



FixedFixed--Size (m) DataSize (m) Data--path: Modelingpath: Modeling

Control the datapath size: Fixed size bit-vectors (m)

* *

8-bit

8-bit

16-bit
32-bit

* *

16-bit

16-bit

16-bit
16-bit

Bit-vector of size m: integer values in 0,…, 2m-1

Fixed-size 
(m) bit-vector 

arithmetic

Polynomials 
reduced %2m

Algebra over 
the ring Z2

m



Multiple BitMultiple Bit--Width OperandsWidth Operands

BitBit--vector operands with different wordvector operands with different word--lengthslengths

Input variables : {Input variables : {xx11,,……, , xxdd}    Output variables: }    Output variables: ff, , gg
Input bitInput bit--widths: {widths: {nn11,,……, , nndd}    Output width: }    Output width: mm

Model as polynomial functionModel as polynomial function

* *

8-bit

12-bit

20-bit
32-bit

n n n m1 2 d 22 2 2
Z × Z ×  × Z ZL →

1 21 2 22 2n n mx Z ,x Z f ,g Z∈ ∈ ∈K



Arithmetic Arithmetic DatapathDatapath: Implementation: Implementation

Signal Truncation: Unsigned/Overflow Arithmetic
• Keep lower order m-bits, ignore higher bits
• f % 2m

Fractional Arithmetic with rounding
• Keep higher order m-bits, round lower order bits

Saturation Arithmetic
• Saturate at overflow
• If( x[7:0] > 255 ) then x[7:0] = 255;
• Used in image-processing applications



Conventional MethodsConventional Methods
Extracting control-dataflow graphs (CDFGs) from RTL 
• Scheduling

• Resource sharing 

• Retiming

• Control synthesis

Algebraic Transforms
• Factorization

• Common Sub-expression Elimination

• Term-rewriting

• Tree-Height Reduction

Overlook the effect of bit-vector size (m)



Previous WorkPrevious Work
Polynomial models for complex computational blocks

Guiding Synthesis engines using Groebner’s basis  
[Peymandoust and De Micheli, TCAD 02]

• Given polynomial F and Library elements <I1, …, In>

• F = h1 I1 + …… + hn In

Computations over R, Q, Z, Zp (Galois Fields)
• Unique Factorization Domains (UFDs): Uniquely factorize into 

irreducibles

• Polynomial approximation (do not account the effect of bit-vector size)

Datapath allocation for multiple-wordlength operands 
[Constantinides et al, TVLSI 05]

• Operates on the given expression



Why is the Problem Difficult?Why is the Problem Difficult?

Z2
m is a non-UFD

• f = x2 + 6x in Z8 can be factorized as 

Factorization in non-UFDs is therefore hard !!!

Scope to explore multiple factorizations 

f

x x+6

f

x+2 x+4



Example: Polynomial FilterExample: Polynomial Filter

A Polynomial filter (f) over a uniform 16A Polynomial filter (f) over a uniform 16--bit bit datapathdatapath

Area: 42910 sq. unitsArea: 42910 sq. units

Alternatively, (f) can be implemented as Alternatively, (f) can be implemented as 

Area: 28840 sq. unitsArea: 28840 sq. units

5 4 3 2
1 16384 19666 38886 16667 52202 1f x x x x x= + + + + +

4 3 2
2 3282 22502 283 52202 1f x x x x= + + + +

16 16
1 2 1 2 1 2, %2 %2 , [15 : 0] [15 : 0]f f but f f f f≠ ≡ =



Digital Image Rejection UnitDigital Image Rejection Unit

•• YY11 ≠≠ YY22

•• YY11[15:0] = Y[15:0] = Y22[15:0][15:0]

•• YY11 % 2% 21616 ≡≡ YY22 % 2% 21616

4 4 2 2

1
Y 16384(A B ) 64767(A B ) A B 57344AB(A B)= + − + − + −+

input A[11:0], B[7:0]; 
output Y1[15:0], Y2[15:0];

2 2 2 2

2
Y 24576A B 15615A 8192AB 32768AB A 17153B 65535B= + + + + + +



Problem ModelingProblem Modeling
Polynomial Model:Polynomial Model:

•• YY11(A(A1212, B, B88)%2)%21616 ≡≡ YY22(A(A1212, B, B88)%2)%21616

•• YY11,Y,Y22:                                 are equal as functions:                                 are equal as functions

Consider YConsider Y11 -- YY22

•• YY11 -- YY2 2 ≡≡ 0 % 20 % 21616

YY1 1 -- YY22 as a function fromas a function from

YY1 1 -- YY2 2 is known as the is known as the vanishing polynomialvanishing polynomial

1612 8 22 2
Z × Z Z→

4 4 2 2

1 2

16

Y Y 16384(A B ) 32768AB(A 1) 49152(A B )

0%2

− = + + + + +

≡

vanishes 1612 8 22 2
Z × Z Z→



Vanishing Polynomials for ReducibilityVanishing Polynomials for Reducibility

In Z2
3, say f (x) = 4x2 and V(x) is a vanishing polynomial

• f (x) = f (x) - V(x)
• Generate V(x) 
• V(x) = 4x2 + 4x ≡ 0 % 23

Reduce by subtraction:
• 4x2 f (x)

– 4x2 + 4x    V(x)
=         - 4x     =    - 4x % 8 = 4x

• 4x2 can be reduced to 4x 

• Degree reduction



Vanishing Polynomials for ReducibilityVanishing Polynomials for Reducibility

Degree is not always reducible

In Z2
3, f (x) = 6x2

Divide and subtract
• 6x2 = 2x2 + 4x2 % 23 

• 4x2 can be reduced to 4x 

f (x) = 2x2 + 4x : Lower Coefficient 
• Coefficient reduction



Results From Number TheoryResults From Number Theory

nn! divides a product of ! divides a product of nn consecutive numbersconsecutive numbers
•• 4! divides 99 4! divides 99 X X 100 X 101 X 102100 X 101 X 102

Find least Find least nn such that such that 22mm|n!|n!
•• SmarandacheSmarandache Function (SF)Function (SF)
•• SF(2SF(233) = 4,) = 4, since since 2233|4!|4!

22mm divides the product ofdivides the product of n = SF(2n = SF(2mm) ) consecutive numbersconsecutive numbers
•• 223 3 divides the product of 4 consecutive numbersdivides the product of 4 consecutive numbers



Results From Number TheoryResults From Number Theory

F F ≡≡ 0 % 20 % 233

•• 2233|F |F in in ZZ22
33

•• 2233 divides the product of 4 consecutive numbersdivides the product of 4 consecutive numbers

If F is a product of 4 consecutive numbers
then 23|F 

A polynomial as a product of 4 consecutive A polynomial as a product of 4 consecutive 
numbers?numbers?

(x-1) (x-2) (x-3)(x)



Basis for Factorization: One VariableBasis for Factorization: One Variable
YY00((xx) = 1) = 1
YY11((xx) = () = (xx))
YY22((xx) = () = (xx)()(xx -- 1)1) = = Product of Product of 22 consecutive numbersconsecutive numbers
YY33((xx) = () = (xx)()(xx -- 1)(1)(xx -- 2)2) = = Product of Product of 33 consecutive numbers       consecutive numbers       
……
……
YYkk((xx) = () = (xx –– kk + 1) Y+ 1) Ykk--11((xx) ) = = Product of Product of kk consecutive numbersconsecutive numbers

Straight forward extension to multiple variables with 
finite word-lengths

Rule 1: Degree is k. If k    n  
where n = SF(2m), use YYkk((xx) (degree reduction)) (degree reduction)

≥



Constraints on the CoefficientConstraints on the Coefficient

F(F(xx) = 4x) = 4x22 -- 4x =     (x)(x4x =     (x)(x--1) % 21) % 23 3 = 0 %2= 0 %233

In In ZZ22
33

•• YY44(x) =  (x) (x(x) =  (x) (x--1)1)

Rule 2: if Coefficient  ≥ bk where bk = 2m/gcd(k!, 2m), then use 

ak. bk. Yk (for coefficient reduction)                                     

Here, Coefficient of F(x) = 4, Degree of F(x) = 2

b<2> = 23/gcd(2!, 23) = 4 (coefficient’s value!!!)                       

compensated by constant

missing factor
(x-2)(x-3)

4



ExampleExample
Consider x4 in Z8 

x4

k =4, SF(8)=4, So V(x) = Y4(x) (Rule 1)
V(x) = x(x-1)(x-2)(x-3)

6x3 + 5x2 + 6x
k=3 <SF(8), bk= 8/(8,6) = 4, Coefficient = 6 
V(x) = 1.4.Y3(x) (Rule 2) 
V(x) = 4.x(x-1)(x-2)

2x3 + x2 + 6x (Canonical Form)

Degree Reduction

Coefficient Reduction



Our ApproachOur Approach
Say f(x) = akxk + ak-1xk-1 + …+ a0

• In decreasing total degree order

Given f(x) and the input/output bit-vector sizes

• Check if degree can be reduced
• Check if coefficient can be reduced
• Perform corresponding reductions to get an intermediate 
expression
• Estimate the cost of the intermediate expression
• Repeat for all monomials …
• Finally, when  f (x) is in the reduced, minimal, unique form, identify 
the expression with the least cost



Exploring more solutionsExploring more solutions
Consider f = xConsider f = x66+8x+8x33+8x in Z+8x in Z1616

Reduction of f leads to following intermediate formsReduction of f leads to following intermediate forms
f = xf = x66+8x+8x33+8x                           f+8x                           f11 = 11x= 11x55+x+x44+9x+9x33+8x+8x22+4x+4x

Reducing only 8xReducing only 8x33+8x leads to 0 (vanishing polynomial!!!)+8x leads to 0 (vanishing polynomial!!!)

f reduces from xf reduces from x66+8x+8x33+8x to x+8x to x66

xx6 6 is a better implementation!!!is a better implementation!!!

ff22 = x= x55+11x+11x44+7x+7x33+14x+14x22+4x+4xff33 = x= x55+x+x44+3x+3x33+12x +12x 
(Canonical form)(Canonical form)

YY66((x)x) 5.2.Y5(x)

5.2.Y4(x)



Cost ModelCost Model
Adder(mAdder(m--bit)= m* Cost (Full Adder)bit)= m* Cost (Full Adder)

MULT(mMULT(m--bit)= Partial products + Arraybit)= Partial products + Array

FAFAFA

FAFAFA

FAFAFA

FAFAFA

a0x0a1x0a2x0a3x0

a0x1a1x1
a2x1

a1x2a2x2

a1x3

p1p2p3

a3x1

a0x2
a3x2

a0x3a2x3
a3x3

0
p0p4p5p6p7



Cost ModelCost Model
Constant Multiplier: Simplification by constant propagation

• Analyze the bit pattern of the constant

• Propagate the bits using the array multiplier model 

Example 1: 5A, Bit pattern of 5 is {0101}

FAFAFA

FAFA

FA

a0.1a1 .1a2 .1a3 .1

a0  .0a1 .0
a2 .0

a0 .1a1 .1

a0 .0

p0p1p2p3



Cost ModelCost Model
Constant Multiplier: Simplification by constant propagation

• Analyze the bit pattern of the constant

• Propagate the bits using the array multiplier model 

Example 1: 5A, Bit pattern of 5 is {0101}

Cost is
3*Cost (HA)

HA

HA

a0a1 a2 a3 

a0 a1 

p0p1p2p3

HA



ResultsResults
BenchmarkBenchmark Est. CostEst. Cost Imp. CostImp. Cost SelectionSelection

OrigOrig MinMin ImprovImprov OrigOrig MinMin ImprovImprov

Poly1Poly1 75817581 37663766 50.3%50.3% 3743037430 2062820628 44%44% MinimalMinimal

Poly2Poly2 48204820 23932393 50.3%50.3% 2884828848 1168411684 59.49%59.49% MinimalMinimal

Poly3Poly3 62276227 54655465 11.7%11.7% 2884028840 2300623006 20.2%20.2% MinimalMinimal

Poly_unoptPoly_unopt 51965196 29942994 42.3%42.3% 2883628836 1442414424 49.9%49.9% MinimalMinimal

Deg4Deg4 2273122731 1636116361 28%28% 116684116684 8271882718 29.1%29.1% MinimalMinimal

JanezJanez 89078907 61636163 30.9%30.9% 4291042910 2884028840 32.7%32.7% MinimalMinimal

MibenchMibench 5851058510 4822648226 17.6%17.6% 249290249290 216772216772 13.04%13.04% IntermedIntermed

IRRIRR 1086410864 69436943 37.3%37.3% 5459454594 3779237792 30.77%30.77% MinimalMinimal

AntialiasAntialias 1599715997 1201112011 24.9%24.9% 7925479254 5971259712 24.65%24.65% IntermedIntermed

PSKPSK 1814018140 1814018140 <1%<1% 7687676876 -- -- OrigOrig

CubicCubic 4759547595 4758647586 <1%<1% 256388256388 -- -- OrigOrig

IIRIIR--44 4933949339 4933349333 <1%<1% 213408213408 -- -- OrigOrig

Average area improvement: 23%
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Conclusions & Future WorkConclusions & Future Work
Area optimization approach  for polynomial datapaths implemented with 
finite word-length operands

Arithmetic datapaths are modeled as a polynomial function from  

f (x1,…, xd) % 2m is reduced to its unique canonical form g (x1, …, xd) % 2m

• Exploiting the concept of polynomial reducibility over

Cost Model to estimate area at polynomial level

Reduction procedure + Cost model -> Least cost expression for 
implementation

Future Work involves extensions for 

• Polynomial Decomposition over such arithmetic

• Given n-bit ADD/MULTS, synthesize an m-bit datapath

n n n m1 2 d 22 2 2
Z × Z ×  × Z ZL →

n n n m1 2 d 22 2 2
Z × Z ×  × Z ZL →



Questions?Questions?
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