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The Optimization Problem
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Polynomials over Bit-Vectors?
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» Quadratic filter design for polynomial signal processing
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» Coefficients/variables implemented with specific bit-
vector sizes



Fixed-Size (m) Data-path: Modeling

» Control the datapath size: Fixed size bit-vectors (m)
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» Bit-vector of size m: integer values in 0,..., 2™-1

SRl Polynomials Algebra over
) [Nl E==tp reduced %2m — the ring Z,»
arithmetic 7




Multiple Bit-Width Operands

> Bit-vector operands with different word-lengths
3-bit 20-bit

—\— = — 32-bit
12-bit IJﬁ =
-DlI

» Input variables : {x,,..., X4} Output variables: f, g
» Input bit-widths: {n,..., ng} Output width: m

)gesz,Xzezznz...f,g el,

» Model as polynomial function

Z XZ, % X2, =7,



Arithmetic Datapath: Implementation

»[Signal Truncation: Unsigned/Overflow Arithmetic

» Keep lower order m-bits, ignore higher bits
o fOp2m

» Fractional Arithmetic with rounding
» Keep higher order m-bits, round lower order bits

» Saturation Arithmetic
« Saturate at overflow
o If( x[7:0] > 255 ) then x[7:0] = 255;
e Used in image-processing applications



Conventional Methods

» Extracting control-dataflow graphs (CDFGs) from RTL
e Scheduling
e Resource sharing
e Retiming
o Control synthesis
» Algebraic Transforms
e Factorization
« Common Sub-expression Elimination
e Term-rewriting
e Tree-Height Reduction
» Overlook the effect of bit-vector size (m)



Previous Work

» Polynomial models for complex computational blocks

» Guiding Synthesis engines using Groebner’s basis

[Peymandoust and De Micheli, TCAD 02]
e Given polynomial F and Library elements <l,, ..., | >
e F=h/l;+ ... +h, |

» Computations over R, Q, Z, Z; (Galois Fields)

. Unique Factorization Domains (UFDs): Uniquely factorize into
irreducibles

Polynomial approximation (do not account the effect of bit-vector size)

» Datapath allocation for multiple-wordlength operands
[Constantinides et al, TVLSI 05]

«  Operates on the given expression



Why is the Problem Difficult?

» Z,"Is a non-UFD

o f=x%2+6x in Zgcan be factorized as
f f
X X+6 X+2 X+4

» Factorization in non-UFDs is therefore hard !!!

» Scope to explore multiple factorizations
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Example: Polynomial Eilter

A Poelynomial filter (f) over a uniferm; 16-bit datapath

f, =16384x° +19666x" +38886X° +16667x* +52202x +1

Area: 42910 sg@. units

Alternatively, (f) can be implemented as

f, =3282x" + 22502x° + 283x° +52202x +1
Area: 28840 sq. units

f,# f,,but f,9%2%° = f %2, f,[15:0] = f,[15:0]



Digital Image Rejection Unit

input A[11:0], B[7:0];
output Y,[15:0], Y,[15:0];

Y =16384(A‘ + B') + 64767(A’ —B°) + A — B + 57344AB(A - B)

Y, = 24576 A"B +15615A° + 8192AB" + 32768AB + A +17153B" + 65535B

- Y, ZY,
. Y,[15:0] = Y,[15:0]
e Y, %216 =Y, 0 216



Problem Modeling

> Polynemial Model:
* Yi(Arp Bg)%2%° = Y, (A, Bg)%2°
* Y.,y Z,%XZ,—>Z, areedual as functions

Y - Y, =16384(A" + B*) + 32768AB(A +1) + 49152(A° + B?)
=(0%2"
> Y,-Y,vanishes as a function from 2212X Z28 —> L s

> Y- Y, Is known as the vanishing polynomial



Vanishing Polynomials for Reducibility

> In Z,3, say f (x) = 4x? and V(x) is a vanishing polynomial
e f(X)=1f(X)-V(X)
« Generate V(X)
e V(X) =4x°+4x = 0 % 23

» Reduce by subtraction:

e  4XK? f (X)
— 4&2 +4x  V(X)

= -4x = -4Xx % 8 = 4X
e 4x2 can be reduced to 4x

 Degree reduction



Vanishing Polynomials for Reducibility
» Degree is not always reducible
> In Z,3, f (x) = 6x°
» Divide and subtract

e BX2= 2X%+ 4x2Yp 23

e 4x2can be reduced to 4x

> f(x) = 2x?+ 4x : Lower Coefficient
e Coefficient reduction



Results From Number Theory

» h! divides a product of niconsecutive numbers
o 4! divides 99 X 100 X 101 X 102

» Find least n such that 2™|n!
« Smarandache Function (SF)
e SF(2°) =4, since 23|4!

» 2™ divides the product of n = SF(2™) consecutive numbers
o 23divides the product of 4 consecutive numbers



Results From Number Theory

> F = 0% 2°
o 2°|F in Z,°
e 2% divides the product of 4 consecutive numbers

If F Is a product of 4 consecutive numbers
then 23|F

» A polynomial as a product of 4 consecutive
numbers?

(x) (x-1) (x-2) (x-3)



Basis for Factorization: One Variable

> Yo(X)
> Y4(X)
> Yo%)
> Y3(X)
> ...

> ...

> Yi(X)

=1

= (%)

= (x)(x - 1) = Product of 2 consecutive numbers
= (x)(x-1)(x-2) =Product of 3 consecutive numbers

= (x-k+1)Y,,(x)=Product of k consecutive numbers

Rule 1: Degree is k. If k> n
where n = SF(2™M), use Y, (x) (degree reduction)

Straight forward extension to multiple variables with

finite word-lengths




Constraints on the Coefficient

> F(X) = 4x?-4x = 4(X)(x-1) % 2°= 0 %2°
compensated by constant
> In Z°
¢ Y0 = (X) (x-1) (x-2)(x-3)
missing factor

Rule 2: if Coefficient 2 b, where b, = 2™/gcd(k!, 2™), then use

a,. b,. Y, (for coefficient reduction)

» Here, Coefficient of F(x) = 4, Degree of F(x) =2
> b_,. = 23/gcd(2!, 23) = 4 (coefficient’s value!!!)




Example

» Consider x*in Zg
x4

k =4, SF(8)=4, So V(X) = Y,(X) (Rule 1)
V0 = x(x-1)(x-2)(x-3) Degree Reduction
6Xx3 + 5X? + 6X
k=3 <SF(8), b,= 8/(8,6) = 4, Coefficient = 6
V(x) = 1.4.Y4(x) (Rule 2)
V(X) = 4.x(x-1)(x-2)

Coefficient Reduction
2x3 + x? + 6x (Canonical Form)



Our Approach

» Say f(x) = ax*+a, _x1+ ...+ a,
* In decreasing total degree order

» Given f(x) and the input/output bit-vector sizes

* Check if degree can be reduced

e Check if coefficient can be reduced

» Perform corresponding reductions to get an intermediate
expression

» Estimate the cost of the intermediate expression

e Repeat for all monomials ...

 Finally, when f (x) is in the reduced, minimal, unique form, identify
the expression with the least cost



Exploring more solutions

> Consider f = x°+8x>+8x In Z

> Reduction of f leads to following intermediate forms

f = x6+8x3+8x * £, = 11xX°+X*H+9x3+8x2+4X

Vo(X) | 52.Yx)
fa = X+x4+3x3+12X < f, = X>+11x4+7Xx3+14x%+4x
(Canonical form) 5.2.Y 4(X)

> Reducing only 8x°+8x leads to 0 (vanishing polynomial!!l)
> freduces from x®+8x3+8x to x°

> X%Is a better implementation!!!



Cost Model

»> Adder(m-bit)= m* Cost (Full Adder)

» MULT(m-bit)= Partial preducts + Array.
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Cost Model

» Constant Multiplier: Simplification by constant propagation

» Analyze the bit pattern of the constant

» Propagate the bits using the array multiplier model
» Example 1: 5A, Bit pattern of 5 is {0101}
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Cost Model

» Constant Multiplier: Simplification by constant propagation
» Analyze the bit pattern of the constant
» Propagate the bits using the array multiplier model

» Example 1: 5A, Bit pattern of 5 is {0101}

HA = |HA =

HA

Cost is
3*Cost (HA) N 5 5, o




Results

: Benchmark Est. Cost Imp. Cost Selection
Orig Min Improv Orig Min Improv I
Poly1 7581 3766 50.3% 37430 20628 44946 Minimal
Poly2 4820 2393 50.3% 28848 11684 59.4906 [ Minimal
Poly3 6227 5465 11.7% 28840 23006 20.2% Minimal
Poly _unopt 5196 2994 42.3% 28836 14424 49.99%0 Minimal
Deg4 22731 | 16361 28% 116684 82718 29.1% Minimal
Janez 8907 6163 30.9% 42910 28840 32.7% Minimal
Mibench 58510 | 48226 17.6% 249290 216772 13.04% | Intermed
IRR 10864 6943 37.3% 54594 37792 30.77% | Minimal
Antialias 15997 12011 24.9% 79254 59712 24.65% | Intermed
PSK 18140 | 18140 <1% 76876 - - Orig
Cubic 47595 | 47586 <1% 256388 - - Orig
IIR-4 49339 | 49333 <1% 213408 - - Orig

Average area improvement: 23%
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Conclusions & Future Work

Area optimization approach for polynomial datapaths implemented with
finite word-length operands

Arithmetic datapaths are modeled as a polynomial function from
Zznlx Z2nz X «oo X Z2nd > Z,
f (Xy,.-., Xg) % 2™ is reduced to its unique canonical form g (X, ..., Xg) % 27

« Exploiting the concept of polynomial reducibility over

Z X7 X ...xZ >7_
21 22 2'd 2
Cost Model to estimate area at polynomial level

Reduction procedure + Cost model -> Least cost expression for
Implementation

Future Work involves extensions for
* Polynomial Decomposition over such arithmetic
* Given n-bit ADD/MULTS, synthesize an m-bit datapath



ouestions?




	Optimization of Arithmetic Datapaths with Finite Word-Length Operands
	Outline
	The Optimization Problem
	Polynomials over Bit-Vectors?
	Fixed-Size (m) Data-path: Modeling�
	Multiple Bit-Width Operands
	Arithmetic Datapath: Implementation
	Conventional Methods
	Previous Work
	Why is the Problem Difficult?
	Example: Polynomial Filter
	Digital Image Rejection Unit
	Problem Modeling
	Vanishing Polynomials for Reducibility
	Vanishing Polynomials for Reducibility
	Results From Number Theory
	Results From Number Theory
	Basis for Factorization: One Variable
	Constraints on the Coefficient
	Example	
	Our Approach
	Exploring more solutions
	Cost Model
	Cost Model
	Cost Model
	Results
	Results
	Conclusions & Future Work
	Questions?

