Optimization of Arithmetic Datapaths with Finite Word-Length Operands

Sivaram Gopalakrishnan¹, Priyank Kalla¹ and Florian Enescu²

¹Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT-84112

²Department of Mathematics and Statistics, Georgia State University, Atlanta, GA-30303

Outline

> Introduction to the datapath optimization problem

- Our Focus: Arithmetic with Finite Word-Length Operands
- Problem Modeling
 - Polynomial Functions over Finite Integer Rings
- Previous Work and Limitations
- Approach and Contributions
 - Reducibility of Polynomials over Finite Rings
 - Cost Model
 - Integrated CAD Approach
- Results: Area optimization
- Conclusions & Future Work

The Optimization Problem

Polynomials over Bit-Vectors?

Quadratic filter design for polynomial signal processing
 $y = a_0 \cdot x_1^2 + a_1 \cdot x_1 + b_0 \cdot x_0^2 + b_1 \cdot x_0 + c \cdot x_0 \cdot x_1$ Coefficients/variables implemented with specific bit-vector sizes

Fixed-Size (m) Data-path: Modeling

 \succ Control the datapath size: Fixed size bit-vectors (m)

> Bit-vector of size *m*: integer values in $0, ..., 2^m - 1$

Multiple Bit-Width Operands

Bit-vector operands with different word-lengths

Input variables : {x₁,..., x_d} Output variables: f, g
 Input bit-widths: {n₁,..., n_d} Output width: m

$$x_1 \in Z_{2^{n_1}}, x_2 \in Z_{2^{n_2}} \dots f, g \in Z_{2^{n_2}}$$

 $Z_{2^{n_1}} \times Z_{2^{n_2}} \times \cdots \times Z_{2^{n_d}} \to Z_{2^m}$

Model as polynomial function

Arithmetic Datapath: Implementation

Signal Truncation: Unsigned/Overflow Arithmetic

- Keep lower order m-bits, ignore higher bits
- f % 2^m

Fractional Arithmetic with rounding

- Keep higher order m-bits, round lower order bits
- Saturation Arithmetic
 - Saturate at overflow
 - If(*x*[7:0] > 255) then *x*[7:0] = 255;
 - Used in image-processing applications

Conventional Methods

Extracting control-dataflow graphs (CDFGs) from RTL

- Scheduling
- Resource sharing
- Retiming
- Control synthesis
- > Algebraic Transforms
 - Factorization
 - Common Sub-expression Elimination
 - Term-rewriting
 - Tree-Height Reduction

Overlook the effect of bit-vector size (m)

Previous Work

- Polynomial models for complex computational blocks
- Guiding Synthesis engines using Groebner's basis [Peymandoust and De Micheli, TCAD 02]
 - Given polynomial F and Library elements <I₁, ..., I_n>
 - $\mathbf{F} = \mathbf{h}_1 \mathbf{I}_1 + \dots + \mathbf{h}_n \mathbf{I}_n$

 \bullet

- Computations over R, Q, Z, Z_p (Galois Fields)
 - Unique Factorization Domains (UFDs): Uniquely factorize into irreducibles
 - Polynomial approximation (do not account the effect of bit-vector size)
- Datapath allocation for multiple-wordlength operands [Constantinides et al, TVLSI 05]
 - Operates on the given expression

Why is the Problem Difficult?

$> Z_2^m$ is a non-UFD

• $f = x^2 + 6x$ in Z_8 can be factorized as

Factorization in non-UFDs is therefore hard !!!

Scope to explore multiple factorizations

Example: Polynomial Filter

> A Polynomial filter (f) over a uniform 16-bit datapath

 $f_1 = 16384x^5 + 19666x^4 + 38886x^3 + 16667x^2 + 52202x + 1$

> Area: 42910 sq. units

> Alternatively, (f) can be implemented as

 $f_2 = 3282x^4 + 22502x^3 + 283x^2 + 52202x + 1$

> Area: 28840 sq. units

 $f_1 \neq f_2, but f_1 \% 2^{16} \equiv f_2 \% 2^{16}, f_1[15:0] = f_2[15:0]$

Digital Image Rejection Unit

input A[11:0], B[7:0];
output Y₁[15:0], Y₂[15:0];

 $Y_1 = 16384(A^4 + B^4) + 64767(A^2 - B^2) + A - B + 57344AB(A - B)$

 $Y_{2} = 24576A^{2}B + 15615A^{2} + 8192AB^{2} + 32768AB + A + 17153B^{2} + 65535B$

- $Y_1 \neq Y_2$
- $Y_1[15:0] = Y_2[15:0]$
- $Y_1 \% 2^{16} \equiv Y_2 \% 2^{16}$

Problem Modeling

Polynomial Model:

• $Y_1(A_{12}, B_8)\%2^{16} \equiv Y_2(A_{12}, B_8)\%2^{16}$ • Y_1, Y_2 : $Z_{2^{12}} \times Z_{2^8} \rightarrow Z_{2^{16}}$ are equal as functions

> Consider $Y_1 - Y_2$ • $Y_1 - Y_2 \equiv 0 \% 2^{16}$ $Y_1 - Y_2 = 16384(A^4 + B^4) + 32768AB(A + 1) + 49152(A^2 + B^2)$ $\equiv 0\% 2^{16}$

≻ Y₁ - Y₂ vanishes as a function from Z_{2¹²} × Z_{2⁸} → Z_{2¹⁶}
 ≻ Y₁ - Y₂ is known as the vanishing polynomial

Vanishing Polynomials for Reducibility

> In Z_2^3 , say $f(x) = 4x^2$ and V(x) is a vanishing polynomial

- f(x) = f(x) V(x)
- Generate V(x)
- $V(x) = 4x^2 + 4x \equiv 0 \% 2^3$

Reduce by subtraction:

- $4x^2$ f(x)- $4x^2 + 4x$ V(x)= - $4x^2 + 4x$ V(x)= - $4x^2 - 4x$ = - 4x % 8 = 4x
- 4x² can be reduced to 4x
- Degree reduction

Vanishing Polynomials for Reducibility

- Degree is not always reducible
- $ightarrow \ln Z_2^3, f(x) = 6x^2$
- Divide and subtract
 - $6x^2 = 2x^2 + 4x^2 \% 2^3$
 - 4x² can be reduced to 4x
- $f(x) = 2x^2 + 4x$: Lower Coefficient
 - Coefficient reduction

Results From Number Theory

n! divides a product of *n* consecutive numbers
 4! divides 99 X 100 X 101 X 102

> Find least *n* such that $2^m | n!$

- Smarandache Function (SF)
- $SF(2^3) = 4$, since $2^3/4!$

> 2^m divides the product of n = SF(2^m) consecutive numbers
 • 2³ divides the product of 4 consecutive numbers

Results From Number Theory

> F \equiv 0 % 2³

- $2^3/F$ in Z_2^3
- 2³ divides the product of 4 consecutive numbers

If *F* is a product of 4 consecutive numbers then $2^3/F$

A polynomial as a product of 4 consecutive numbers?

(x)(x-1)(x-2)(x-3)

Basis for Factorization: One Variable

 $> Y_0(x) = 1$

- \succ Y₁(x) = (x)
- $> Y_2(x) = (x)(x 1)$ = Product of 2 consecutive numbers
- \succ Y₃(x) = (x)(x 1)(x 2) = Product of 3 consecutive numbers

 \succ Y_k(x) = (x - k + 1) Y_{k-1}(x) = Product of k consecutive numbers

Rule 1: Degree is k. If $k \ge n$ where $n = SF(2^m)$, use $Y_k(x)$ (degree reduction)

Straight forward extension to multiple variables with finite word-lengths

Constraints on the Coefficient

> $F(x) = 4x^2 - 4x = 4(x)(x-1) \% 2^3 = 0 \% 2^3$

compensated by constant

 $\geq \ln \mathbb{Z}_2^3$

• $Y_4(x) = (x) (x-1)(x-2)(x-3)$ missing factor

Rule 2: if Coefficient $\geq b_k$ where $b_k = 2^m/gcd(k!, 2^m)$, then use

 a_k , b_k , Y_k (for coefficient reduction)

> Here, Coefficient of F(x) = 4, Degree of F(x) = 2

 $b_{<2>} = \frac{2^3}{\text{gcd}(2!, 2^3)} = 4$ (coefficient's value!!!)

\succ Consider x⁴ in Z₈

 X^4

k =4, SF(8)=4, So V(x) = $Y_4(x)$ (Rule 1) V(x) = x(x-1)(x-2)(x-3) Degree Reduction

 $6x^{3} + 5x^{2} + 6x$ $k=3 < SF(8), b_{k}=8/(8,6) = 4, Coefficient = 6$ $V(x) = 1.4.Y_{3}(x) (Rule 2)$ V(x) = 4.x(x-1)(x-2)Coefficient Reduction $2x^{3} + x^{2} + 6x (Canonical Form)$

Our Approach

- > Say $f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0$
 - In decreasing total degree order
- > Given f(x) and the input/output bit-vector sizes
 - Check if degree can be reduced
 - Check if coefficient can be reduced
 - Perform corresponding reductions to get an intermediate expression
 - Estimate the cost of the intermediate expression
 - Repeat for all monomials ...
 - Finally, when f(x) is in the reduced, minimal, unique form, identify the expression with the least cost

Exploring more solutions

- > Consider $f = x^6 + 8x^3 + 8x$ in Z_{16}
- Reduction of f leads to following intermediate forms $f = x^{6} + 8x^{3} + 8x \xrightarrow{Y_{6}(x)} f_{1} = 11x^{5} + x^{4} + 9x^{3} + 8x^{2} + 4x$ $\downarrow 5.2. Y_{5}(x)$ $f_{3} = x^{5} + x^{4} + 3x^{3} + 12x \xleftarrow{f_{2}} = x^{5} + 11x^{4} + 7x^{3} + 14x^{2} + 4x$ (Canonical form) $f_{2} = x^{5} + 11x^{4} + 7x^{3} + 14x^{2} + 4x$
- > Reducing only $8x^3+8x$ leads to 0 (vanishing polynomial!!!)
- > f reduces from x^6+8x^3+8x to x^6
- x⁶ is a better implementation!!!

Cost Model

Adder(m-bit)= m* Cost (Full Adder)

MULT(m-bit)= Partial products + Array

Cost Model

- Constant Multiplier: Simplification by constant propagation
 - Analyze the bit pattern of the constant
 - Propagate the bits using the array multiplier model
- Example 1: 5A, Bit pattern of 5 is {0101}

Cost Model

- Constant Multiplier: Simplification by constant propagation
 - Analyze the bit pattern of the constant
 - Propagate the bits using the array multiplier model
- Example 1: 5A, Bit pattern of 5 is {0101}

Results

Benchmark	Est. Cost			Imp. Cost			Selection
	Orig	Min	Improv	Orig	Min	Improv	
Poly1	7581	3766	50.3%	37430	20628	44%	Minimal
Poly2	4820	2393	50.3%	28848	11684	59.49%	Minimal
Poly3	6227	5465	11.7%	28840	23006	20.2%	Minimal
Poly_unopt	5196	2994	42.3%	28836	14424	49.9%	Minimal
Deg4	22731	16361	28%	116684	82718	29.1%	Minimal
Janez	8907	6163	30.9%	42910	28840	32.7%	Minimal
Mibench	58510	48226	17.6%	249290	216772	13.04%	Intermed
IRR	10864	6943	37.3%	54594	37792	30.77%	Minimal
Antialias	15997	12011	24.9%	79254	59712	24.65%	Intermed
PSK	18140	18140	<1%	76876	-	- /	Orig
Cubic	47595	47586	<1%	256388	_	/ _/	Orig
IIR-4	49339	49333	<1%	213408			Orig

Average area improvement: 23%

Results

Benchmark	Est. Cost			Imp. Cost			Selection
	Orig	Min	Improv	Orig	Min	Improv	
Poly1	7581	3766	50.3%	37430	20628	44%	Minimal
Poly2	4820	2393	50.3%	28848	11684	59.49%	Minimal
Poly3	6227	5465	11.7%	28840	23006	20.2%	Minimal
Poly_unopt	5196	2994	42.3%	28836	14424	49.9%	Minimal
Deg4	22731	16361	28%	116684	82718	29.1%	Minimal
Janez	8 <mark>907</mark>	6163	30.9%	42910	28840	32.7%	Minimal
Mibench	58510	48226	17.6%	249290	216772	13.04%	Intermed
IRR	10864	6943	37.3%	54594	37792	30.77%	Minimal
Antialias	15997	12011	24.9%	79254	59712	24.65%	Intermed
PSK	18140	18140	<1%	76876	-	/	Orig
Cubic	47595	47586	<1%	256388	_		Orig
IIR-4	49339	49333	<1%	213408	$\frac{1}{1}$		Orig

Average area improvement: 23%

Conclusions & Future Work

- Area optimization approach for polynomial datapaths implemented with finite word-length operands
- > Arithmetic datapaths are modeled as a polynomial function from

$$\mathbf{Z}_{2^{n_1}} \times \mathbf{Z}_{2^{n_2}} \times \cdots \times \mathbf{Z}_{2^{n_d}} \to \mathbf{Z}_{2^n}$$

 $\succ f(x_1,...,x_d) \% 2^m$ is reduced to its unique canonical form $g(x_1,...,x_d) \% 2^m$

• Exploiting the concept of polynomial reducibility over

$$\mathbf{Z}_{2^{n_1}} \times \mathbf{Z}_{2^{n_2}} \times \cdots \times \mathbf{Z}_{2^{n_d}} \to \mathbf{Z}_{2^m}$$

- Cost Model to estimate area at polynomial level
- Reduction procedure + Cost model -> Least cost expression for implementation
- Future Work involves extensions for
 - Polynomial Decomposition over such arithmetic
 - Given n-bit ADD/MULTS, synthesize an m-bit datapath

