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Introduction

• Clock skew

– Difference in clock arrival times due to clock 
distribution delays

• Zero skew [Tsay ICCAD91]

• Skew scheduling [Fishburn TC90]

– Assigns skews to FFs to improve performance

– Arbitrary skews cannot be implemented reliably
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Introduction

• Multi-domain skew scheduling                     
[Ravindran et al. ICCAD03]
– Given number of domains
– Algorithms to compute optimal schedule

• No control on the domain distribution
• Not consider the flexibility of delay padding  

[Shenoy et al. ICCAD93]
– Insert extra delays on short paths 
– Keep delays on long paths unchanged
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Motivation Example

• Case 1: skew(i)=skew(j), then T ≥ 7
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Motivation Example

• Case 2: skew(i)=T/2, skew(j)=0, then 6 ≤ T ≤ 8

– The mini T is reduced to 6 by skew scheduling
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Motivation Example

• Case 3: skew(i)=0, skew(j)=T/2, then infeasible

– If delay 5 is inserted at A, then T = 14
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Motivation Example

• Observations

– Skew scheduling may help to reduce period

– Caution should be taken to avoid infeasibility

– Delay padding can remedy a skew schedule
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Problem Formulation

[Optimal Skew Scheduling]

• Given

– A sequential circuit 

– A finite set of prescribed skew domains

• Find

– A domain assignment for each FF

– Setup & hold constraints satisfied with padding

– Clock period is minimized
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Notations

• N skew domains

– s0T, s1T, … , sNT   w.r.t.  the clock period T

– 0 = s0 < s1 < … < sN < 1

• Setup period X, hold period H

• A directed graph G=(V,E)

V: gates and FFs

E: interconnects
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Notations

• Each gate v : max delay D(v), min delay d(v)

• Each combinational path p from FF i to FF j 

– max delay D(p), min delay d(p) without padding

– max delay ﾄ(p), min delay (p) with padding
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Constraints

• Feasibility of a given period T

– Domain index l(i) of FF i
– Setup constraints

– Hold constraints
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Algorithm Overview

• Find an optimal domain assignment 

– Minimizes period under setup constraints only

• Compute an efficient padding solution by network 
flow 

– There is always a padding solution under the 
minimum period
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Lower Bound for Feasible Period

• For any combinational path p

• Subtracting the first by the second yields

T-X(j)-H(j) ≥ ﾄ(p)-(p) = D(p)-d(p)
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Lower Bound for Feasible Period

• (Lemma)  A feasible period T must satisfy

• We can compute Tlb by a longest path computation 
in O(|E|+|V|log|V|) time
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Minimum Period under Setup Constraints

• If we know an optimal domain assignment l*
– TS = max (D(i,j)+X(j)) / (1+sl*(i)–sl*(j))
– Optimal period T* = max (Tlb ,TS)

• But, how to compute l* ?
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Algorithm to Compute l*

• Start with zero domain for all FFs

– l(i) = 0, for all i
• T = max (D(i,j)+X(j)) / (1+sl(i)–sl(j))

• If T ≤ Tlb , the current l is an l*
• Else, suppose (x,y) is the edge determining T

– Show that  sl*(y)–sl*(x) > sl(y)–sl(x)

– Increase l(y) by 1

• Iterate until there exists some i  s.t. l(i) > N
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Algorithm to Compute l*

• (Lemma)  l ≤ l* is kept before we reach an l*

• The algorithm terminates in O(N|Vt|Btlog|Et|) with 
an optimal l* and the minimal period T* under 
setup constraints only
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Padding for Hold Constraints

• Is there always a padding solution under l* and T*?

– Yes. (Shenoy et al. [ICCAD93])

• Minimum padding is LP
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Network Flow Algorithm for Padding

• Find a “good” padding in much less time than LP

– Find a feasible padding such that the setup 
slack is zero on each edge

* Min-cost flow problem
* Any padding less than the obtained padding 

solution satisfies setup constraints

– Tighten the obtained padding to meet hold 
* Convex-cost flow problem
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Experimental Setup

• ISCAS-89 benchmark

– ASTRA [ Sapatnekar TCAD’96]

– Assign D(v) = d(v) between 2 and 100

– X = 2, H = 2

• MOSEK solver for min-padding

• 4 evenly distributed skew domains
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Experimental Results
(Skew Scheduling)

• Reduction in period

– 16.9% average

• Efficiency

– 0.59 seconds for 
the largest test
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Experimental Results
(Delay Padding)

• Padding solution is 
good

– 1.5X min-padding

– Amortized area 
overhead is small

• Efficiency 

– 16X faster than 
MOSEK solver
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Conclusions

• Prescribed skews are a better trade-off between 
schedule flexibility and clock implementation

• Polynomial-time skew scheduling algorithm

– Minimizes clock period

– Provable optimality 

– Practical efficiency

• Delay padding under min-period

– Existence guaranteed

– Solved by efficient network flow techniques

Charlie Chung-Ping ChenCharlie Chung-Ping Chen
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Thank You !
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