

An Efficient Computation of Statistically Critical Sequential Paths Under Retiming

Mongkol Ekpanyapong*, Xin Zhao, and Sung Kyu Lim

School of Electrical and Computer Engineering Georgia Institute of Technology Intel Corporation*

Presented by Prof. Hsien-Hsin "Sean" Lee

Georgialnstitute of Technology

Outline

- Motivation
- Related Work
- SRTA Algorithm
- Experimental Results
- Conclusion

Motivation

- Process Variation
 - Varied transistor length, width, thickness
 - "Same" transistor, different gate delay
- Today in statistical timing analysis research – FFs are ignored (in most cases)
 - Retiming is still an useful/powerful method.

Motivation

Timing Analysis	Static Timing Analysis (STA)	Statistical Static Timing Analysis	Retiming- based Timing Analysis	Statistical Retiming-based Timing Analysis
		(551A)		(SRIA) this
	•Simple, Fast	•Handle process variation	•Faster Circuit	 Faster Circuit Handle process variation
	No retimingNo statistical	•No retiming	•No statistical	

 $\gamma \approx$

Main Contribution

- In this research, we show
 - How to compute timing slack distribution of statistically critical paths under retiming.
 - This timing info helps select "correct" paths to focus on under process variation.
 - How to apply mincut based global placement the connected critical gates closer together

Related Work I

- Retiming-based Timing Analysis (RTA)
 - Cong and Lim [ICCAD00]
 - Combines timing analysis and retiming
 - computes timing slack after retiming
 - Identifies critical paths assuming retiming will follow
 - Focusing on these paths provides better performance-driven placement results

GEO Overview [Cong and Lim, ICCAD00]

- Mincut-based global placer
- RTA is used during partitioning

Related Work II

- Statistical Bellman-Ford (SBF) algorithm
 - Ekpanyapong, Watewai, and Lim [ASPDAC06]
 - BF computes longest paths on cyclic graphs
 - BF does not converge if the graph contains positive cycles
 - Statistical BF
 - Delay values are distribution
 - It is possible a negative cycle becomes positive with some probability
 - Showed how to handle statistically positive cycles

Our SRTA Algorithm

- Overview
 - Statistical version of RTA algorithm (= RTA+SBF)
 - RTA needs Bellman-Ford, so we need SBF
 - Computes timing slack distribution of statistically critical paths under retiming
 - $O(n^2)$ in the worst-case, $O(k \cdot n)$ in practice
 - Used in performance-driven min-cut global placement

Statistical Timing Model

• Gate/Wire delay distribution

$$d(v) = d_m(v) + a_1 \Delta L_g^t(v) + a_2 \Delta W_g^t(v)$$

$$d(e) = d_m(e) + \sum_{k \in T(e)} \left[b_1 \Delta W_i^k(e) + b_2 \Delta T_i^k(e) \right]$$

Statistical Sequential Slack

- Statistical Sequential Arrival Time (SSAT)
 - Arrival time distribution at v if all PI-to-v paths are retimed to φ
 - $l(v) = \max\{l(u) \phi \cdot w(e) + d(e) + d(v)|e(u,v) \in E\}$

- Statistical Sequential Required Time (SSRT)
 - Required time distribution at v if all v-to-PO paths are retimed to $\boldsymbol{\phi}$

$$q(v) = \min\{q(u) + \phi \cdot w(e) - d(e) - d(v)|e(v,u) \in E\}$$

Statistical Sequential Slack (SSSK) = SSRT-SSAT

Overview of SRTA

```
Given: \varphi (target clock period for retiming)
1. Perform DFS and compute K;
2. for (i = 0 \text{ to } K+1)
      for (each vertex v)
3.
          compute SSAT(v, \phi);
4.
          compute SSRT(v, \phi);
5.
6. COMPUTE MFCPD (Min Feasible Clock Period Distrubition);
7. Pc = probability(positive_cycle);
8. if (Pc < threshold)
       return(MFCPD);
9. return(FALSE);
```


Number of Iterations

- Computation of *k* using depth-first search
 - K = maximum number of cycles a node is included in
 - A single DFS finds this number

Statistical Target Clock Period

- Computation of MFCPD
 - Min Feasible Clock Period Distribution
 - Statistical Maximum between
 - SSAT (Statistical Sequential Arrival Time) of all sink nodes
 - Delay distribution of the longest cycle

Comparisons

- We compare
 - STA: Static Timing Analysis
 - SSTA: Statistical Static Timing Analysis
 - RTA: Retiming-based Timing Analysis
 - SRTA: Statistical Retiming-based Timing Analysis

Comparisons (cont)

	STA	SSTA	RTA	SRTA
Basic Algorithm	Topological sort	Topological sort with statistical operation	Bellman-Ford	Bellman-Ford with statistical operation
Complexity	O(<i>n</i>)	O(<i>n</i>)	O(<i>n</i> ²) O(<i>k.n</i>) in practice	O(<i>n</i> ²) O(<i>k.n</i>) in practice
Advantage	Simple Fast	Can handle process variation	Model retiming delay	Faster Circuit Can handle process
Disadvantage	No retiming No statistical	Slow No retiming	Slow No statistical	variation Slow

Georgia Institute

Experimental Results

• Benchmark circuits

ckt	gate	PI	PO	FF	K+1
s5378	2828	36	49	163	76
s9234	5597	36	39	211	239
s13207	8027	31	121	669	510
s15850	9786	14	87	597	495
s38417	22397	28	106	1636	1444
s38584	19407	12	278	1452	1860
b14o	5401	32	299	245	451
b15o	7092	37	519	449	988
b20o	11979	32	512	490	1486
b21o	12156	32	512	490	1511
b22o	17351	32	725	703	1870

Experimental Results

• MFCPD results

ckt	Final MFCPD	Max Cycle	Sink SSAT
s5378	199.00	62.76	199.00
S9234	257.03	225.08	257.03
S13207	344.87	281.36	344.87
S15850	410.53	276.76	410.53
s38417	214.23	214.23	152.89
s38584	494.73	394.07	494.73
b14o	176.36	137.44	176.36
b15o	278.53	278.53	57.56
b20o	295.11	295.11	117.14
b21o	295.70	295.70	275.72
b22o	366.36	318.80	366.36
			Georgialmætiturt: StCa

Georgia Institut: of Technology

Global Placement Results

	Without retiming		With retiming	
ckt	STA	SSTA	RTA	SRTA
s5378	232.00	218.96	212.00	199.00
s9234	407.00	379.05	287.00	257.03
s13207	426.00	403.43	364.00	344.87
s15850	575.00	532.59	435.00	410.53
s38417	390.00	363.29	217.00	214.23
s38584	576.00	554.21	515.00	494.73
b14o	375.00	351.86	195.00	176.36
b15o	352.00	327.57	292.00	278.53
b20o	516.00	484.09	318.00	295.11
b21o	518.00	479.66	320.00	295.70
b22o	626.00	605.99	375.00	366.36
Avg.	1	0.94	0.71	0.67

Conclusions

 Process variation will make timing analysis more difficult in deep submicron design

• We propose an effective algorithm to compute statistical critical paths under retiming

• We show that the placement optimization based on SRTA achieves better performance results compared to other well-known timing analyzers

Georgialnstitute of Technology

That's all, folks !

