
Approximation Algorithm
for Process Mapping on
Network Processor Architectures

Chris Ostler, Karam S. Chatha,

Goran Konjevod

Department of Computer Science

Arizona State University

Traffic Processing Growth

Lead to the development of multi-core, multi-threaded
network processor architectures

Internet traffic doubling
every 6 months

Processor performance doubling
every 18 months

Single processor systems can
not meet performance needs

Intel IXP 2400 Processor

� Eight independent

micro-engines

� Support for 8 threads

� Block execution

� Available memory

� 2.5 KB local memory

� 16 KB scratchpad

� Off-chip SRAM

� Off-chip DRAM

� Complex architecture that is challenging to
program in absence of structured methodology

Paper Contributions

� Develop throughput optimization
strategies

� Process network transformations

� Discuss properties of optimal
solutions

� Derive upper bound on throughput

� Propose approximation algorithm

� Results have throughput at least ½
optimal

Multi-threading and Memory Latency

Memory latency can be hidden by multi-threading

� Possible to ignore memory latency

� Consider only effect of execution time on throughput

For 600 cycles of execution, 4200 cycles of latency:

� Single thread completes once every 4800 cycles

� Multiple (8) threads complete once every 600 cycles

Application Description

Process network specification

� Concurrently executing processes

� Communicate only through bounded FIFOs

� May use abstract shared memory (tables, etc.)

� Profiled to determine code size, execution time

Routing table

Meter table

. . .

DSCP table

Packet store

Data Items

Problem Description

Given:

� Set J of jobs, each characterized with
execution time tj, code size sj

� M symmetric processors, with MEM_AVAIL
instruction memory

Objective:

� Find static mapping of jobs to machines to
maximize worst case throughput

Such that:

� All jobs assigned to a machine fit in
available memory

Motivating Example

Consider simple case:

� 3 jobs, 3 machines

� Assign one job to one machine

Throughput is one completion
every 3000 cycles

Merge and Replicate Transformations

� Alter process network to increase

throughput

� Eliminate highest, lowest throughput
processes

Throughput is doubled, but transformations
are limited by code memory

Design Flow

Focus of paper is process assignment

Require as input:

Application description Performance characterization

Data mapping Architectural features

Previous Work

� Task Allocation
� Shirazi et al. (1995)

� Not applicable to network processor
architectures

� Scheduling Synchronous Dataflow Networks
� A. Jantsh (2005)

� Sriram et al. (2000)

� Do not consider code memory constraints

� Minimize latency not optimize throughput

� Network Processor Techniques
� Shah et al. (2002)

� Ramaswamy et al. (2005)

� Do not exploit parallelism of applications

Optimal Solutions

� Best throughput when execution divided

evenly among all machines

� Every machine has 100% utilization

� Can be achieved by assigning all jobs to
every machine

∑ ∈

=
Jj jt

M
Throughput

Job Assignment Algorithm

� Given a set of jobs, we can determine the

ideal fraction (xj) of available machines

� Simple strategy: round down xj, except
cannot assign a job zero machines

� Too many jobs (|J| > M) → Batching

� Some jobs xj ≤ 1 → Recursive strategy

∑ ∈

⋅
=

Ji i

j
j t

tM
x

Batching

� Assign jobs to batches

� Assign batches to
machines

� Incorporates merge,
replicate
transformations

� Reduces problem
complexity

� Optimal throughput
remains unchanged

Recursive Solution Strategy

� Batch jobs, and determine xb for all
batches

� Find batch s with smallest xs

� If xs ≥ 1, round down all xb

� Otherwise, round up xs, solve for
remaining jobs, machines

Jobs must be batched so that final
throughput can be guaranteed

MAX_MIN_TIME Function

Given:

� A set of jobs, with execution time and size

� A number of batches

� The amount of code memory available

Objective:

� Assign jobs to batches so that the minimum
execution time is maximized

Currently implemented using simple ILP

MAX_MIN_TIME Function

No more computation can assigned small batch

� Machine will be under-utilized vs. ideal

� Same under-utilization in an optimal solution

� Machine assignment is optimal

s

J / s

Ideal time: Xb · tb

Smallest
batch

Remaining
computation

ASSIGN_JOBS Algorithm

Start

Assign smallest
batch 1 machine

Batch jobs
(MAX_MIN_TIME)

Batches += 1

End

Determine xb

values for batches

min(xb) ≥ 1

Batches = 1

Batches ≤ M

Assign floor(xb)
machines

Not
possible

Y N

Y

N

Recurse for
remainder

Approximation Bound

Assign smallest
batch 1 machine

min(xb) ≥ 1

Assign floor(xb)
machines

Y

N

Assignment is optimal
as the smallest batch
is maximized

(MAX_MIN_TIME)

Approximation bound
holds in recursive call

2

1

x

)(floor

b

≥bx

Each batch assigned at least ½ ideal machines

� Complete in no more than twice optimal time

� Overall throughput at least ½ optimal

Recurse for
remainder

Experimental Results

� Use algorithm to map three common
network processing applications

� Targeted Intel IXP 2400 network processor
� Limit code memory to 400 instructions

� Reserved 2 micro-engines for receive, transmit

� Compare solution throughput to upper
bound, ILP formulation using batching
� Runtime of non-batched ILP prohibitive

Experimental Applications

� IPSec, IPv4

� 6 processes

� Diverse execution time

� Diffserv, IPv4

� 6 processes

� Uniform execution time

� IPSec, Diffserv, IPv4

� 8 processes

� Diverse execution time

Mapping Results

Throughput normalized

to upper bound

Throughput within:
• 78% of bound
• 87% of ILP

0

0.2

0.4

0.6

0.8

1

1.2

IPSec, IPv4 Diffserv, IPv4 IPSec, Diffserv, IPv4

N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Upper Bound Batched ILP Approx. Alg.

Conclusion

� Tools are necessary to fully exploit
multi-core network processors

� Proposed approximation algorithm to
map application to processing cores

� Solutions guaranteed to have throughput
at least half that of optimal solution

� Experimental results showed throughput
within 78% of optimal

