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Traffic Processing Growth

Lead to the development of multi-core, multi-threaded
network processor architectures

Internet traffic doubling
every 6 months

Processor performance doubling
every 18 months

Single processor systems can
not meet performance needs



Intel IXP 2400 Processor

� Eight independent 

micro-engines

� Support for 8 threads

� Block execution

� Available memory

� 2.5 KB local memory

� 16 KB scratchpad

� Off-chip SRAM

� Off-chip DRAM

� Complex architecture that is challenging to 
program in absence of structured methodology



Paper Contributions

� Develop throughput optimization 
strategies

� Process network transformations

� Discuss properties of optimal 
solutions

� Derive upper bound on throughput

� Propose approximation algorithm

� Results have throughput at least ½
optimal



Multi-threading and Memory Latency

Memory latency can be hidden by multi-threading

� Possible to ignore memory latency

� Consider only effect of execution time on throughput

For 600 cycles of execution, 4200 cycles of latency:

� Single thread completes once every 4800 cycles

� Multiple (8) threads complete once every 600 cycles



Application Description

Process network specification

� Concurrently executing processes

� Communicate only through bounded FIFOs

� May use abstract shared memory (tables, etc.)

� Profiled to determine code size, execution time

Routing table

Meter table

. . .

DSCP table

Packet store

Data Items



Problem Description

Given:

� Set J of jobs, each characterized with 
execution time tj, code size sj

� M symmetric processors, with MEM_AVAIL 
instruction memory

Objective:

� Find static mapping of jobs to machines to 
maximize worst case throughput

Such that:

� All jobs assigned to a machine fit in 
available memory



Motivating Example

Consider simple case:

� 3 jobs, 3 machines

� Assign one job to one machine

Throughput is one completion 
every 3000 cycles



Merge and Replicate Transformations

� Alter process network to increase 

throughput

� Eliminate highest, lowest throughput 
processes

Throughput is doubled, but transformations
are limited by code memory



Design Flow

Focus of paper is process assignment

Require as input:

Application description Performance characterization

Data mapping Architectural features



Previous Work

� Task Allocation
� Shirazi et al. (1995)

� Not applicable to network processor 
architectures

� Scheduling Synchronous Dataflow Networks
� A. Jantsh (2005)

� Sriram et al. (2000)

� Do not consider code memory constraints

� Minimize latency not optimize throughput

� Network Processor Techniques
� Shah et al. (2002)

� Ramaswamy et al. (2005)

� Do not exploit parallelism of applications



Optimal Solutions

� Best throughput when execution divided 

evenly among all machines

� Every machine has 100% utilization

� Can be achieved by assigning all jobs to 
every machine
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Job Assignment Algorithm

� Given a set of jobs, we can determine the 

ideal fraction (xj) of available machines

� Simple strategy: round down xj, except 
cannot assign a job zero machines

� Too many jobs (|J| > M) → Batching

� Some jobs  xj ≤ 1 → Recursive strategy
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Batching

� Assign jobs to batches

� Assign batches to 
machines

� Incorporates merge, 
replicate 
transformations

� Reduces problem 
complexity

� Optimal throughput 
remains unchanged



Recursive Solution Strategy

� Batch jobs, and determine xb for all 
batches

� Find batch s with smallest xs

� If xs ≥ 1, round down all xb

� Otherwise, round up xs, solve for 
remaining jobs, machines

Jobs must be batched so that final 
throughput can be guaranteed



MAX_MIN_TIME Function

Given:

� A set of jobs, with execution time and size

� A number of batches

� The amount of code memory available

Objective:

� Assign jobs to batches so that the minimum 
execution time is maximized

Currently implemented using simple ILP



MAX_MIN_TIME Function

No more computation can assigned small batch

� Machine will be under-utilized vs. ideal

� Same under-utilization in an optimal solution

� Machine assignment is optimal

s

J / s

Ideal time: Xb · tb

Smallest
batch

Remaining
computation



ASSIGN_JOBS Algorithm

Start

Assign smallest
batch 1 machine

Batch jobs
(MAX_MIN_TIME)

Batches += 1

End

Determine xb

values for batches

min(xb) ≥ 1

Batches = 1

Batches ≤ M

Assign floor(xb)
machines

Not
possible

Y N

Y

N

Recurse for
remainder



Approximation Bound

Assign smallest
batch 1 machine

min(xb) ≥ 1

Assign floor(xb)
machines

Y

N

Assignment is optimal
as the smallest batch
is maximized

(MAX_MIN_TIME)

Approximation bound
holds in recursive call

2

1

x

)(floor

b

≥bx

Each batch assigned at least ½ ideal machines

� Complete in no more than twice optimal time

� Overall throughput at least ½ optimal

Recurse for
remainder



Experimental Results

� Use algorithm to map three common 
network processing applications

� Targeted Intel IXP 2400 network processor
� Limit code memory to 400 instructions

� Reserved 2 micro-engines for receive, transmit

� Compare solution throughput to upper 
bound, ILP formulation using batching
� Runtime of non-batched ILP prohibitive



Experimental Applications

� IPSec, IPv4

� 6 processes

� Diverse execution time

� Diffserv, IPv4

� 6 processes

� Uniform execution time

� IPSec, Diffserv, IPv4

� 8 processes

� Diverse execution time



Mapping Results

Throughput normalized 

to upper bound

Throughput within:
• 78% of bound
• 87% of ILP
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Conclusion

� Tools are necessary to fully exploit 
multi-core network processors

� Proposed approximation algorithm to 
map application to processing cores

� Solutions guaranteed to have throughput 
at least half that of optimal solution

� Experimental results showed throughput 
within 78% of optimal


