
1

Implementation of a Real Time Programmable
Encoder for Low Density Parity Check Code on a

Reconfigurable Instruction Cell Architecture

Zahid Khan, Tughrul Arslan

System Level Integration Group
School of Engineering and Electronics

The University of Edinburgh,
Scotland, UK

z.khan@ed.ac.uk, Tughrul.Arslan@ee.ed.ac.uk,

mailto:z.khan@ed.ac.uk
mailto:Tughrul.Arslan@ee.ed.ac.uk

2

Outline

• System Overview

• Introduction to LDPC coding and encoding algorithms

• Need for Real time Encoding

• Real time Encoder

• Memory Optimization

• Features of Reconfigurable Instruction Cell Architecture (RICA)

• Implementation and optimization on RICA

• Results and Conclusion

3

System Overview of LDPC Coding
in 802.16E For WiMax

WiMax Transmitter

WiMax Receiver

4

LDPC Representation

• Matrix Representation

• Parity check matrix with dimension n x m

• For low density matrix w(Hc)«n and
w(Hr)«m

• Graphical Representation

• Tanner introduced bipartite graphical
representation for LDPC codes.

• Bipartite graph is a set of graph vertices
decomposed into two disjoint sets such
that no two graph vertices within the
same set are adjacent.

• The two types of vertices in a Tanner
graph are called variable nodes (v
nodes) and check nodes (c nodes)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

01011001
11100100
00100111
10011010

H

5

Encoding Algorithms

• H is constructed from identity
matrices using right circular shift
permutation

• H is divided into sub-matrices
(A,B,C,D,E,T) as according to
the IEEE specification.

• The T matrix is made lower
triangular without losing the
sparseness of the H matrix
using column and row permutations.

• Since the H remains sparse, encoding Complexity is O(n+z2) which is almost
linear with the length of the code.

• Various length codes can be accommodated easily.
• For code rate 1/2, number of effective cycles of computation are 0.0172n2+n
• .

Algorithm

DC

BA

E

T
m

n

n-m z m-z

m-z

z

6

• Construction of H as according to the IEE802.16E/D7
standard for variable code length and rate

• Permuting H row as well as column wise to make T
approximately lower triangular.

• Base Model Matrix according to code length and rate

• Splitting H as according to
Algorithm 4

• Encoding the information bits as according to Algorithm

Encoding Steps

7

Real Time Programmable Encoder

• Varying channel conditions and
good QoS requires adaptation

• Configuration of both encoder and
decoder is necessary for such
adaptation.

• Adaptation can be with respect to
Frame Size, Code Rate,
modulation scheme and/or
different encoding/decoding
algorithms

• Inside a particular FEC, adaptation
is w.r.t. Frame Size and Code
Rate

• A Real time
adaptable/programmable LDPC
Encoder is proposed that can
adapt on the fly to varying frame
sizes and code rates as defiend by
the IEEE 802.16 for WiMax
Application

Model
Matrix

1
Model
Matrix

1

Base Matrix
Generate

Configuration
Block

Spreading Factor

A, B, C, E, T
Child Matrices

Generate

A A-
row B B-

row C C-
row E E-

row T T-
row

Frame Size

Code Rate

Spreading Factor, max row,
max col of H matrix

 Hbm Hb

Memory Array

MVM
G=AuT

MVM
F=CuT

Forward
Substitution and

MVM
D=ET-1GT

MVM
M=BLT

Forward
Substitution
P2=T-1NT

P1=D+F N=M+G
A A-row E E-row T T-row

B B-row T T-row

C C-row

Code
Frame

Figure 2.1

Figure 2.2

buffer bufferbuffer

8

Real Time Programmable Encoder

• Encoder has two blocks:
– H matrix Generate
– Actual Encoding

• Real Time H matrix Generate
– H matrix is generated from the

model matrices defined in IEEE
standard

– Model matrix generates Base
Matrice (Hb)

– Hb then generates H in the form of
child matrices A, B, C, E and T

• Actual Encoding
– The encoder takes the child

matrices (A, B, C, E and T) and the
information bits to generate the
parity bits according to the
architecture shown in Figure 2.1

Operation

Model
Matrix

1
Model
Matrix

1

Base Matrix
Generate

Configuration
Block

Spreading Factor

A, B, C, E, T
Child Matrices

Generate

A A-
row B B-

row C C-
row E E-

row T T-
row

Frame Size

Code Rate

Spreading Factor, max row,
max col of H matrix

 Hbm Hb

Memory Array

MVM
G=AuT

MVM
F=CuT

Forward
Substitution and

MVM
D=ET-1GT

MVM
M=BLT

Forward
Substitution
P2=T-1NT

P1=D+F N=M+G
A A-row E E-row T T-row

B B-row T T-row

C C-row

Code
Frame

Figure 2.1

Figure 2.2

buffer bufferbuffer

9

Memory Optimization in H Matrix Storage

• H matrix consists of 1’s and 0’s
• Storing 0’s and 1’s will take huge

memory
– For Code Rate = ½ and Frame

size = 2304 bits, the memory for
H= 1152 * 2304 =2.53 Mbits =
316 Kbytes

• Direct storage is not
recommended for huge memory
requirement

• An alternative way is to store the
indexes of 1’s inside the H matrix

• Memory consumption is
affordable

– For Code Rate=1/2 and Frame
size =2304, required memory is
16K bytes

• Its equivalent to 20 times
reduction

RICA

MEM MEM

MEM MEM

μPRICA

MEMDMA

ΙP

ADD ADD MUL MUL REG SHIFT SHIFT LOGIC MUL DIV REG CMP

MEM MEM MEM MEM I/O I/O REG REG ADD ADD SHIFT LOGIC

REG

Data Memory

Switchbox Interconnect Scheme

I/O Ports Program Memory

JUMP

Configuration
stream

program counter

RICA RICA
A single processing engine capable of converging

data, cellular and multimedia processing on
mobile devices

11

Code Optimization

• Code Hierarchy
– Vectoradd.c,

H_Matrix_Generate.c,
Base_Matrix.c, MVM.c,
Forward_Substitution.c

• Simulation results of the
un-optimized code shows 3.5
Mbps for code rate 1/2.

• General, Algorithmic and
RICA specific optimization
techniques are used for
manual optimization

• Optimization is focussed on
Vectoradd.c, MVM.c and
Forward_Substitution.c as
they are used in actual
encoding

12

Optimization Specific to Algorithm

• This is carried out mainly in the T child matrix
• Two types of child matrice

• zf x zf zero matrix
• zf x zf identity matrix

• T matrix is used in forward substitution TY = x to solve Y=T-1x
• No need to compute T due to uniformity in the distribution of 1’s

{-1,94,73,-1,-1,-1,-1,-1,55,83,-1,-1, 7, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1},
{-1,27,-1,-1,-1,22,79, 9,-1,-1,-1,12,-1, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1},
{-1,-1,-1,24,22,81,-1,33,-1,-1,-1, 0,-1,-1, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1},
{61,-1,47,-1,-1,-1,-1,-1,65,25,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1,-1,-1,-1},
{-1,-1,39,-1,-1,-1,84,-1,-1,41,72,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1,-1,-1},
{-1,-1,-1,-1,46,40,-1,82,-1,-1,-1,79, 0,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1,-1},
{-1,-1,95,53,-1,-1,-1,-1,-1,14,18,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1},
{-1,11,73,-1,-1,-1, 2,-1,-1,47,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1},
{12,-1,-1,-1,83,24,-1,43,-1,-1,-1,51,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1,-1},
{-1,-1,-1,-1,-1,94,-1,59,-1,-1,70,72,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1},
{-1,-1, 7,65,-1,-1,-1,-1,39,49,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0},
{43,-1,-1,-1,-1,66,-1,41,-1,-1,-1,26, 7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0},

{1,0,0,0,0,0,0,0}
{0,1,0,0,0,0,0,0}
{0,0,1,0,0,0,0,0}
{0,0,0,1,0,0,0,0}
{0,0,0,0,1,0,0,0}
{0,0,0,0,0,1,0,0}
{0,0,0,0,0,0,1,0}
{0,0,0,0,0,0,0,1}

13

Optimization Specific to algorithm

for (i=0; i<zf; i+=4)
{ *(Ptrtovout + i+0) = *(*(PtrtoT+i+0)+ Ptrtovin);

*(Ptrtovout + i+1) = *(*(PtrtoT+i+1)+ Ptrtovin);
*(Ptrtovout + i+2) = *(*(PtrtoT+i+2)+ Ptrtovin);
*(Ptrtovout + i+3) = *(*(PtrtoT+i+3)+ Ptrtovin);

}

for (i=zf; i<indext; i+=8)
{ *(Ptrtovout + count+0) = *(*(PtrtoT+i+0)+Ptrtovout) ^ *(*(PtrtoT+i+1)+Ptrtovin);

*(Ptrtovout + count+1) = *(*(PtrtoT+i+2)+Ptrtovout) ^ *(*(PtrtoT+i+3)+Ptrtovin);
*(Ptrtovout + count+2) = *(*(PtrtoT+i+4)+Ptrtovout) ^ *(*(PtrtoT+i+5)+Ptrtovin);
*(Ptrtovout + count+3) = *(*(PtrtoT+i+6)+Ptrtovout) ^ *(*(PtrtoT+i+7)+Ptrtovin);

}

index = m-zf; // m is the total rows and zf is the spreading factor
for (i=0; i<zf; i+=4)

{ Ptrtovout[i] = Ptrtovin[i+0];
Ptrtovout[i+1] = Ptrtovin[i+1];
Ptrtovout[i+2] = Ptrtovin[i+2];
Ptrtovout[i+3] = Ptrtovin[i+3]; }

count=0; //zf
for (i=zf;i<index;i+=4) //8)

{ Ptrtovout[i] = Ptrtovout[count] ^ Ptrtovin[i];
Ptrtovout[i+1] = Ptrtovout[count+1] ^ Ptrtovin[i+1];
Ptrtovout[i+2] = Ptrtovout[count+2] ^ Ptrtovin[i+2];
Ptrtovout[i+3] = Ptrtovout[count+3] ^ Ptrtovin[i+3];
count +=4; }

• Initial coding involves huge
amount of memory accesses for
the T matrix

• Modified code involves less
memory accesses due absence
of the T matrix

14

RICA Specific Code Optimization

• Vector_Add

– It adds modulo-2 two input vectors
– Modulo-2 addition is bit wise, enough

parallelism is present
– Parallelism is exploited for increased

throughput
– Initial code has 2*zf read and zf write

access---- a total of 3*zf
– 4 parallel memory banks in RICA

reduces memory accesses to
zf/4 (read) + zf/4 (read) + zf/4 (write)
= 3*zf/4

– Significant reduction in execution time
with loop unrolling has been achieved

• Memory Initialization
– Loop unrolling is also used to initialize

memory arrays. The loop is unrolled by
a factor of 4 for optimum optimization

The original code is:
for (i=0;i<zf;i++)

{
Ptrtovout[i] = Ptrtovin1[i] ^ Ptrtovin2[i] ;

}

for (i=0;i<zf;i+=4)
{

Ptrtovout[i+0] = Ptrtovin1[i+0] ^ Ptrtovin2[i+0] ;
Ptrtovout[i+1] = Ptrtovin1[i+1] ^ Ptrtovin2[i+1] ;
Ptrtovout[i+2] = Ptrtovin1[i+2] ^ Ptrtovin2[i+2] ;
Ptrtovout[i+3] = Ptrtovin1[i+3] ^ Ptrtovin2[i+3] ;

}

for (i=0;i<zf;i+=4)
{

Ptrtovout[i+0] = 0 ;
Ptrtovout[i+1] = 0 ;
Ptrtovout[i+2] = 0 ;
Ptrtovout[i+3] = 0 ;

}

15

RICA Specific Code Optimization

• Forward_Substitution

– The module performs y = T-1*x using
forward substitution x = T * y

– Loop is unrolled by four
– Significant reduction in cycle count has

been achieved

• Reducing Memory Accesses

– In coding style 2, *(PtrtoB+j+0) is used twice
– The compiler calculates the effective

address twice and then reads the
value stored at the effective address
twice as well.

– This can be reduced to one access and
one calculation by storing the value on
stack in a temporary variable and then
using the value stored in the variable
for further processing.

count=0;

for (i=zf;i<indext;i+=4)
{

Ptrtovout[i+0] = Ptrtovout[count+0] ^ Ptrtovin[i+0];
Ptrtovout[i+1] = Ptrtovout[count+1] ^ Ptrtovin[i+1];
Ptrtovout[i+2] = Ptrtovout[count+2] ^ Ptrtovin[i+2];
Ptrtovout[i+3] = Ptrtovout[count+3] ^ Ptrtovin[i+3];
count +=4;

}

Coding Style 1:
TmpBvalue=*(PtrtoB+j+0);
if(TmpBvalue==-1) *(PtrtoBp1+i) = 0;
else *(PtrtoBp1+i) ^= *(TmpBvalue + Ptrtop1);
if(*(PtrtoBrow+j+0)) i++;
Coding Style 2:
if(*(PtrtoB+j+0)== -1) *(PtrtoBp1+i) = 0;
else *(PtrtoBp1+i) ^= *(*(PtrtoB+j+0) + Ptrtop1);
if(*(PtrtoBrow+j+1)) i++;

16

Code Optimization

• Replacing jumps with
multiplexing

– RICA executes the code in
steps. A step is defined as
combination of instructions that
can be executed in the fabric
provided by RICA.

– A step is determined by the
number of available resources,
conditional branch and the length
of the critical path.

– RICA is structured to support
only one jump per step. The
reduction in number of steps is
related to reducing the execution
time due to reduction in
configuration time overhead as
well as the possibility that the
longer step will execute some of
the code in parallel

– Jumps are replaced as much as
possible with multiplexers

17

RICA Specific Optimization

• An example step has been shown

• This step involves reading data from
the memory, performing some
computations and then writing the
results to the memory

• This step loops to itself

• The execution time of this step has
been computed to be 28 nsec per
iteration and for 120 iterations, the
total execution time = 28 * 120 =
3.36 µsec

• Read, Computation and Write
operations can be pipelined to
reduce the computation time

Hardware Pipelining

18

RICA Specific Optimization

• The step is pipelined

• Pipelined registers are inserted at
two stages to increase the clock
speed.

• Due to practical constraints, the
pipelined step should not be less
than 10 nsec.

• The execution time of this step has
been computed to be 10 nsec per
step and for 120 iterations, the total
execution time 1.2 µsec

• Overhead of registers and of course
area and power consumption

Hardware Pipelining

19

Results

One time execution of LDPC Encoder = 554.926 µsec
Number of steps taken: 106129
Two times execution of LDPC Encoder = 666.232 µsec
Number of steps taken: 123674

Execution time of actual encoding
to be used in real time = 666.232 – 554.926 = 111.3 µsec
Number of steps of actual encoding = 123674 – 106129 = 17545
Execution time per bit = 111.3/1152 = 96.61 nsec/bit
Throughput = 1/96.61 = 10.4 Mbps (½ rate).

For code rate ¾ , the throughput is measured to be approximately 19 Mbps.
This is the highest code rate that IEEE 802.16 defines for the irregular LDPC
codes.

With pipelining the code, the throughput are given below

For code rate ½, throughput = 26 Mbps
For cdoe rate ¾, throughput = 47 Mbps

20

Conclusion

– A Novel architecture for the Real time programmable LDPC
Encoder for Mobile WiMax applications as specified in the IEEE
P802.16E/D7 standard has been suggested

– This is the first implementation for the real time LDPC encoding for
WiMax applications.

– The architecture has been implemented on RICA with RICA specific
and generic optimizations applied to the code.

– We achieved 2.8 times improvement in throughput compared to the
un-optimized code that corresponds to 10.4-19 Mbps.

– The pipelined version resulted in 26 to 47 Mbps throughput
– A similar but not real time FPGA implementation has resulted in 22

Mbps throughput. However, RICA implementation is C
programmable compared to that of FPGA.

– Further reduction is still possible not only by exploiting the parallel
processing elements but also by exploiting the uniformity inside the
model matrices specified in the 802.16

21

Thank You

	 Implementation of a Real Time Programmable Encoder for Low Density Parity Check Code on a Reconfigurable Instruction Cell Arc
	Outline
	LDPC Representation
	Encoding Algorithms
	Encoding Steps
	Real Time Programmable Encoder
	Real Time Programmable Encoder
	Memory Optimization in H Matrix Storage
	Code Optimization
	Optimization Specific to Algorithm
	Optimization Specific to algorithm
	RICA Specific Code Optimization
	RICA Specific Code Optimization
	Code Optimization
	RICA Specific Optimization
	RICA Specific Optimization
	Results
	Conclusion

