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Outline

• System Overview

• Introduction to LDPC coding and encoding algorithms

• Need for Real time Encoding

• Real time Encoder

• Memory Optimization

• Features of Reconfigurable Instruction Cell Architecture (RICA)

• Implementation and optimization on RICA

• Results and Conclusion
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System Overview of LDPC Coding 
in 802.16E For WiMax

WiMax Transmitter

WiMax Receiver
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LDPC Representation

• Matrix Representation

• Parity check matrix with dimension n x m

• For low density matrix w(Hc)«n and     
w(Hr)«m

• Graphical Representation

• Tanner introduced bipartite graphical 
representation for LDPC codes.

• Bipartite graph is a set of graph vertices 
decomposed into two disjoint sets such 
that no two graph vertices within the 
same set  are adjacent.

• The two types of vertices in a Tanner 
graph are called variable nodes (v 
nodes) and check nodes (c nodes)
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Encoding Algorithms

• H is constructed from identity                                   
matrices using right circular shift                             
permutation

• H is divided into sub-matrices                                                        
(A,B,C,D,E,T) as according to                                                
the IEEE specification. 

• The T matrix is made lower                                           
triangular without losing the                                   
sparseness of the H matrix                                                         
using column and row permutations. 

• Since the H remains sparse, encoding Complexity is O(n+z2) which is almost 
linear with the length of the code. 

• Various length codes  can be accommodated easily. 
• For code rate 1/2, number of effective cycles of computation are 0.0172n2+n
• .
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• Construction of H as according to the IEE802.16E/D7 
standard for variable code length and rate

• Permuting H row as well as column wise to make T 
approximately lower triangular.

• Base Model Matrix according to code length and rate

• Splitting H as according to                                  
Algorithm 4

• Encoding the information bits as according to Algorithm

Encoding Steps
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Real Time Programmable Encoder

• Varying channel conditions and 
good QoS requires adaptation 

• Configuration of both encoder and 
decoder is necessary for such 
adaptation.

• Adaptation can be with respect to 
Frame Size, Code Rate, 
modulation scheme and/or 
different encoding/decoding 
algorithms

• Inside a particular FEC, adaptation 
is w.r.t. Frame Size and Code 
Rate

• A Real time 
adaptable/programmable LDPC 
Encoder is proposed that can 
adapt on the fly to varying frame 
sizes and code rates as defiend by 
the IEEE 802.16 for WiMax
Application
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Real Time Programmable Encoder

• Encoder has two blocks:
– H matrix Generate
– Actual Encoding

• Real Time H matrix Generate
– H matrix is generated from the 

model matrices defined in IEEE 
standard

– Model matrix generates Base 
Matrice (Hb) 

– Hb then generates H in the form of 
child matrices A, B, C, E and T

• Actual Encoding 
– The encoder takes the child 

matrices (A, B, C, E and T) and the 
information bits to generate the 
parity bits according to the 
architecture shown in Figure 2.1 
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Memory Optimization in H Matrix Storage

• H matrix consists of 1’s and 0’s
• Storing 0’s and 1’s will take huge 

memory
– For Code Rate = ½ and   Frame 

size = 2304 bits, the memory for 
H= 1152 * 2304 =2.53 Mbits = 
316 Kbytes

• Direct storage is not 
recommended for huge memory 
requirement 

• An alternative way is to store the 
indexes of 1’s inside the H matrix 

• Memory consumption is 
affordable

– For Code Rate=1/2 and Frame 
size =2304, required memory is 
16K bytes

• Its equivalent to 20 times 
reduction
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Code Optimization

• Code Hierarchy
– Vectoradd.c, 

H_Matrix_Generate.c, 
Base_Matrix.c, MVM.c, 
Forward_Substitution.c

• Simulation results of the     
un-optimized code shows 3.5 
Mbps for code rate 1/2.

• General, Algorithmic and 
RICA specific optimization 
techniques are used for 
manual optimization 

• Optimization is focussed on 
Vectoradd.c, MVM.c and 
Forward_Substitution.c as 
they are used in actual 
encoding
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Optimization Specific to Algorithm

• This is carried out mainly in the T child matrix
• Two types of child matrice

• zf x zf zero matrix
• zf x zf identity matrix

• T matrix is used in forward substitution TY = x to solve Y=T-1x
• No need to compute T due to uniformity in the distribution of 1’s

{-1,94,73,-1,-1,-1,-1,-1,55,83,-1,-1, 7, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}, 
{-1,27,-1,-1,-1,22,79, 9,-1,-1,-1,12,-1, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1},
{-1,-1,-1,24,22,81,-1,33,-1,-1,-1, 0,-1,-1, 0, 0,-1,-1,-1,-1,-1,-1,-1,-1},
{61,-1,47,-1,-1,-1,-1,-1,65,25,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1,-1,-1,-1},
{-1,-1,39,-1,-1,-1,84,-1,-1,41,72,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1,-1,-1},
{-1,-1,-1,-1,46,40,-1,82,-1,-1,-1,79, 0,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1,-1},
{-1,-1,95,53,-1,-1,-1,-1,-1,14,18,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1,-1},
{-1,11,73,-1,-1,-1, 2,-1,-1,47,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1,-1,-1},
{12,-1,-1,-1,83,24,-1,43,-1,-1,-1,51,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1,-1},
{-1,-1,-1,-1,-1,94,-1,59,-1,-1,70,72,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0,-1},
{-1,-1, 7,65,-1,-1,-1,-1,39,49,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 0},
{43,-1,-1,-1,-1,66,-1,41,-1,-1,-1,26, 7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0},

{1,0,0,0,0,0,0,0}
{0,1,0,0,0,0,0,0}  
{0,0,1,0,0,0,0,0}
{0,0,0,1,0,0,0,0}  
{0,0,0,0,1,0,0,0}
{0,0,0,0,0,1,0,0}  
{0,0,0,0,0,0,1,0}
{0,0,0,0,0,0,0,1}
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Optimization Specific to algorithm

for (i=0; i<zf; i+=4)                   
{  *(Ptrtovout + i+0) = *(*(PtrtoT+i+0)+ Ptrtovin);

*(Ptrtovout + i+1) = *(*(PtrtoT+i+1)+ Ptrtovin);
*(Ptrtovout + i+2) = *(*(PtrtoT+i+2)+ Ptrtovin);
*(Ptrtovout + i+3) = *(*(PtrtoT+i+3)+ Ptrtovin);  

}

for (i=zf; i<indext; i+=8)    
{     *(Ptrtovout + count+0) = *(*(PtrtoT+i+0)+Ptrtovout) ^ *(*(PtrtoT+i+1)+Ptrtovin);   

*(Ptrtovout + count+1) = *(*(PtrtoT+i+2)+Ptrtovout) ^ *(*(PtrtoT+i+3)+Ptrtovin);
*(Ptrtovout + count+2) = *(*(PtrtoT+i+4)+Ptrtovout) ^ *(*(PtrtoT+i+5)+Ptrtovin);
*(Ptrtovout + count+3) = *(*(PtrtoT+i+6)+Ptrtovout) ^ *(*(PtrtoT+i+7)+Ptrtovin); 

}

index = m-zf;     // m is the total  rows and zf is the spreading factor  
for (i=0; i<zf; i+=4)    

{ Ptrtovout[i]      =  Ptrtovin[i+0];  
Ptrtovout[i+1]  =  Ptrtovin[i+1]; 
Ptrtovout[i+2]  =  Ptrtovin[i+2]; 
Ptrtovout[i+3]  =  Ptrtovin[i+3];     }        

count=0; //zf
for (i=zf;i<index;i+=4) //8)

{ Ptrtovout[i]      = Ptrtovout[count]    ^ Ptrtovin[i];
Ptrtovout[i+1]  = Ptrtovout[count+1] ^ Ptrtovin[i+1];
Ptrtovout[i+2]  = Ptrtovout[count+2] ^ Ptrtovin[i+2];
Ptrtovout[i+3]  = Ptrtovout[count+3] ^ Ptrtovin[i+3];
count +=4;   }

• Initial coding involves huge 
amount of memory accesses for 
the T matrix

• Modified code involves less 
memory accesses due absence 
of the T matrix
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RICA Specific Code Optimization

• Vector_Add

– It adds modulo-2 two input vectors
– Modulo-2 addition is bit wise, enough 

parallelism is present
– Parallelism is exploited for increased 

throughput 
– Initial code has 2*zf read and zf write 

access---- a total of 3*zf
– 4 parallel memory banks in RICA 

reduces memory accesses to             
zf/4 (read) + zf/4 (read) + zf/4 (write)     
= 3*zf/4

– Significant reduction in execution time 
with loop unrolling has been achieved

• Memory Initialization
– Loop unrolling is also used to initialize 

memory arrays. The loop is unrolled by 
a factor of 4 for optimum optimization  

The original code is:
for (i=0;i<zf;i++)

{
Ptrtovout[i] = Ptrtovin1[i] ^ Ptrtovin2[i] ;    

}

for (i=0;i<zf;i+=4)
{

Ptrtovout[i+0] = Ptrtovin1[i+0] ^ Ptrtovin2[i+0] ;
Ptrtovout[i+1] = Ptrtovin1[i+1] ^ Ptrtovin2[i+1] ;
Ptrtovout[i+2] = Ptrtovin1[i+2] ^ Ptrtovin2[i+2] ;
Ptrtovout[i+3] = Ptrtovin1[i+3] ^ Ptrtovin2[i+3] ;

}

for (i=0;i<zf;i+=4)
{

Ptrtovout[i+0] = 0 ;
Ptrtovout[i+1] = 0 ;
Ptrtovout[i+2] = 0 ;
Ptrtovout[i+3] = 0 ;

}
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RICA Specific Code Optimization

• Forward_Substitution

– The module performs y = T-1*x using 
forward substitution x = T * y

– Loop is unrolled by four 
– Significant reduction in cycle count has 

been achieved

• Reducing Memory Accesses

– In coding style 2, *(PtrtoB+j+0) is used twice 
– The compiler calculates the effective 

address twice and then reads the 
value stored at the effective address 
twice as well. 

– This can be reduced to one access and 
one calculation by storing the value on 
stack in a temporary variable and then 
using the value stored in the variable 
for further processing. 

count=0; 

for (i=zf;i<indext;i+=4) 
{      

Ptrtovout[i+0] =  Ptrtovout[count+0]   ^  Ptrtovin[i+0];
Ptrtovout[i+1] =  Ptrtovout[count+1]   ^  Ptrtovin[i+1];
Ptrtovout[i+2] =  Ptrtovout[count+2]   ^  Ptrtovin[i+2];
Ptrtovout[i+3] =  Ptrtovout[count+3]   ^  Ptrtovin[i+3];
count +=4;

}

Coding Style 1:
TmpBvalue=*(PtrtoB+j+0);
if(TmpBvalue==-1)       *(PtrtoBp1+i)  = 0;
else   *(PtrtoBp1+i) ^= *(TmpBvalue + Ptrtop1); 
if(*(PtrtoBrow+j+0))      i++;  
Coding Style 2:    
if(*(PtrtoB+j+0)== -1)     *(PtrtoBp1+i)  = 0;
else   *(PtrtoBp1+i) ^= *(*(PtrtoB+j+0) + Ptrtop1);
if(*(PtrtoBrow+j+1))      i++;
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Code Optimization

• Replacing jumps with 
multiplexing

– RICA executes the code in 
steps. A step is defined as 
combination of instructions that 
can be executed in the fabric 
provided by RICA.

– A step is determined by the 
number of available resources, 
conditional branch and the length 
of the critical path.

– RICA is structured to support 
only one jump per step. The 
reduction in number of steps is 
related to reducing the execution 
time due to reduction in 
configuration time overhead as 
well as the possibility that the 
longer step will execute some of 
the code in parallel

– Jumps are replaced as much as 
possible with multiplexers 
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RICA Specific Optimization

• An example step has been shown 

• This step involves reading data from 
the memory, performing some 
computations and then writing the 
results to the memory 

• This step loops to itself

• The execution time of this step has 
been computed to be 28 nsec per 
iteration and for 120 iterations, the 
total execution time = 28 * 120 = 
3.36 µsec

• Read, Computation and Write 
operations can be pipelined to 
reduce the computation time

Hardware Pipelining
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RICA Specific Optimization

• The step is pipelined 

• Pipelined registers are inserted at 
two stages to increase the clock 
speed.

• Due to practical constraints, the 
pipelined step should not be less 
than 10 nsec.

• The execution time of this step has 
been computed to be 10 nsec per 
step and for 120 iterations, the total 
execution time 1.2 µsec

• Overhead of registers and of course 
area and power consumption

Hardware Pipelining
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Results

One time execution of LDPC Encoder       =  554.926 µsec
Number of steps taken:   106129
Two times execution of LDPC Encoder     =  666.232 µsec
Number of steps taken: 123674

Execution time of actual encoding 
to be used in real time                               =   666.232 – 554.926 = 111.3 µsec 
Number of steps of actual encoding          =  123674  – 106129 = 17545
Execution time per bit                                =  111.3/1152 = 96.61 nsec/bit
Throughput                                                =  1/96.61 = 10.4 Mbps (½ rate).

For code rate ¾ , the throughput is measured to be approximately 19 Mbps. 
This is the highest code rate that IEEE 802.16 defines for the irregular LDPC 
codes.

With pipelining the code, the throughput are given below

For code rate ½, throughput      =  26 Mbps
For cdoe rate ¾, throughput      =  47 Mbps
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Conclusion

– A Novel architecture for the Real time programmable LDPC 
Encoder for Mobile WiMax applications as specified in the IEEE 
P802.16E/D7 standard has been suggested

– This is the first implementation for the real time LDPC encoding for 
WiMax applications.

– The architecture has been implemented on RICA with RICA specific
and generic optimizations applied to the code.

– We achieved 2.8 times improvement in throughput compared to the 
un-optimized code that corresponds to 10.4-19 Mbps. 

– The pipelined version resulted in 26 to 47 Mbps throughput 
– A similar but not real time FPGA implementation has resulted in 22 

Mbps throughput. However, RICA implementation is C 
programmable compared to that of FPGA. 

– Further reduction is still possible not only by exploiting the parallel 
processing elements but also by exploiting the uniformity inside the 
model matrices specified in the 802.16 
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Thank You
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