Improving XOR-Dominated Circuits by Exploiting Dependencies between Operands

Ajay K. Verma and Paolo I enne

ap csda
Processor Architecture Laboratory (LAP) \& Centre for Advanced Digital Systems (CSDA)

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Logic Synthesis: Limited Dependency Exploitation

- Logic synthesis tools are extremely good at optimizing the Boolean expressions containing AND, OR and NOT gates.

$$
a b(a+b)+c a+\bar{c} \longrightarrow a+\bar{c}
$$

- In case of XOR gate either expand the XOR gate in terms of AND and OR gate, or replace the XOR expression by a new variable.
- Expanding XOR gates might increase the expression size exponentially, and the expansion cannot be restored due to shortcomings of algebraic factoring.

Only dependencies among the operands of AND and OR gates are utilized.

Multiplier: XOR Gates with Correlated Operands

Multiplier: XOR Gates with Correlated Operands

Both bits cannot be true Simultaneously.

$$
\begin{aligned}
& a_{0} b_{1} a_{1} b_{0}(a_{0} b_{2} \oplus a_{1} b_{1} \underbrace{\left.\oplus a_{2} b_{0}\right) \rightarrow \overline{a_{1} b_{2} \oplus a_{2} b_{1}}}+\cdots \\
& \left.\quad a_{0} b_{1} a_{1} b_{0}\left(a_{0} b_{2} \oplus a_{1} b_{1} \oplus a_{2} b_{0}\right)\right) \&\left(a_{1} b_{2} \oplus a_{2} b_{1}\right)
\end{aligned}
$$

Outline

- Related work.
- Problem formulation.
- Basic Idea.
- Expanding XOR gates selectively.
- Analysis and improvement of basic idea.
- Broadening of selection criteria.
- Results.
- Conclusions.

Related Work

- Optimization of general XOR-dominated circuits.
- Optimization of Reed-Muller form [Mishchenko01, ...]
- 2-SPP form optimization [Bernasconi06]
- BDD-based logic optimization [Sasao93, Yang00, ...]
- Optimization of column compressors.
- Carry-save addition [Wallace64]
- Optimization using various size counters [Song91]
- Proper scheduling of counters (TGA) [Oklobdzija96, Stelling98, ...]

Why Not Expand All XOR's

$$
\begin{aligned}
& P=a_{0} b_{3} a_{3} b_{0}+a_{0} b_{3} a_{1} b_{2}+a_{1} b_{2} a_{3} b_{0} \\
& Q=a_{2} b_{1}\left(a_{0} b_{3} \oplus a_{1} b_{2} \oplus a_{3} b_{0}\right) \\
& R=P \oplus Q \longrightarrow \overline{P Q}(P+Q)
\end{aligned}
$$

Before expansion : $0.37 \mathrm{~ns}\left(138.2 \mu \mathrm{~m}^{2}\right)$
After expansion : $0.26 \mathrm{~ns}\left(146.9 \mu \mathrm{~m}^{2}\right)$
$P=a_{0} a_{1}+a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}$
$Q=b_{0} b_{1}+b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{4}$
$R=P \oplus Q$

Problem Statement

Given a circuit consisting of AND, OR, NOT, and XOR gates, find a list of XOR gates which should be expanded to achieve smallest critical path delay after logic synthesis.

- Correlation factor: XOR gates with sufficient correlation between its operands must be expanded in order to reduce delay.

Selective Expansion

$$
\left.\begin{array}{c}
A B=0 \rightarrow A \oplus B=A+B \\
A+B=1 \rightarrow A \oplus B=\overline{A B}
\end{array}\right\} \begin{gathered}
\text { Extremely correlated } \\
\text { operands }
\end{gathered}
$$

- Small expression: An expression that can be computed quickly.
- XOR expansion:

$$
A \oplus B=\overline{A B}(A+B)
$$

Relative sizes of (AB) and (A+B) are a good measure of correlation between A and B.

Selective Expansion Contd.

$$
P Q=a_{0} b_{0} a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}
$$

Quickly computable compared to P and Q

Before expansion : $0.37 \mathrm{~ns}\left(138.2 \mu \mathrm{~m}^{2}\right)$
After expansion : $0.26 \mathrm{~ns}\left(146.9 \mu \mathrm{~m}^{2}\right)$

$$
\left\{\begin{array}{c}
P+Q=a_{0} a_{1}+a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+ \\
b_{0} b_{1}+b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{4} \\
P Q=\sum_{i=0}^{i=3} \sum_{j=0}^{j=3} a_{i} a_{i+1} b_{j} b_{j+1}
\end{array}\right.
$$

Slow computation
Before expansion : $0.22 \mathrm{~ns}\left(58.8 \mu \mathrm{~m}^{2}\right)$
compared to P and Q After expansion : $0.27 \mathrm{~ns}\left(221.2 \mu \mathrm{~m}^{2}\right)$

Criteria for XOR Expansion

isExpansionUseful (operand A, operand B)
\{
$\varepsilon=1-\frac{\min \left(D_{A B}, D_{A+B}\right)}{\max \left(D_{A}, D_{B}\right)} ; \quad / /$ correlation factor.
$\Delta=\frac{A R\left(D_{A B}+D_{A B}\right)}{A R\left(D_{A}+D_{B}\right)}-1 ; \quad / /$ area penalty.
// correlation between the operands must be significant as well as
// expansion should not have huge area overhead.
if $\left(\varepsilon<\varepsilon_{\text {threshold }}\right.$ or $\left.\Delta>\Delta_{\text {threshold }}\right)$
return false;
// area penalty per unit correlation must be small.
if $(\Delta / \varepsilon>k)$
return false;
return true;

Correlation between XOR-Operands and Rest of the Function Can Be Useful

Local correlation: correlation between the operands of XOR.

$$
A \oplus B=\overline{A B}(A+B)
$$

Global correlation: correlation between the rest of the expression and the operands of XOR.

$$
\begin{aligned}
& (A \oplus B)+C=(A B \rightarrow C) \cdot(A+B+C) \\
& (A \oplus B)+C=(\bar{A} \cdot \bar{B} \rightarrow C) \cdot(\overline{A B}+C)
\end{aligned}
$$

Global Correlation Example

Comparator function

(1) $\left.\left.(A>B) \equiv a_{n}>b_{n}\right)+a_{n}=b_{n}\right)\left(a_{n-1}>b_{n-1}\right)+\left(a_{n}=b_{n}\right)\left(a_{n-1}=b_{n-1}\right)\left(a_{n-2}>b_{n-2}\right)+\ldots$ $(A>B) \equiv\left(a_{n} \overline{b_{n}}\right)+\left(a_{n} \oplus \overline{b_{n}}\right)\left(a_{n-1} \overline{b_{n-1}}\right)+\left(a_{n} \oplus \overline{b_{n}}\right)\left(a_{n-1} \oplus \overline{b_{n-1}}\right)\left(a_{n-2} \overline{b_{n-2}}\right)+\ldots$
(2) $(A>B) \equiv\left(a_{n}>b_{n}\right)+\underbrace{\left(a_{n} \geq b_{n}\right)}_{\downarrow})\left(a_{n-1}>b_{n-1}\right)+\left(a_{n} \geq b_{n}\right)\left(a_{n-1} \geq b_{n-1}\right)\left(a_{n-2}>b_{n-2}\right)+\ldots$
$(A>B) \equiv\left(a_{n} \overline{b_{n}}\right)+\left(a_{n}+\overline{b_{n}}\right)\left(a_{n-1} \overline{b_{n-1}}\right)+\left(a_{n}+\overline{b_{n}}\right)\left(a_{n-1}+\overline{b_{n-1}}\right)\left(a_{n-2} \overline{b_{n-2}}\right)+\ldots$

$$
\operatorname{carry}(\mathrm{A}+\overline{\mathrm{B}}+1)=\operatorname{carry}(\mathrm{A}-\mathrm{B})
$$

Global correlation converts a user friendly implementation into synthesis friendly implementation.

Overall Algorithm

- The expression tree is optimized iteratively by expanding XOR gates based on local and global correlation criteria.
- If there are more than XOR gates which satisfy the expansion criteria, a proper ordering of expansion is decided using a greedy heuristic.
- In order to measure local and global correlation, an estimator function is used to estimate the delay and area values.

Experimental Setup

Results

ADPCM Decoder

Commercial Optimizations (BOA)
Selective Expansion
8×8-bit Multiplier

DesignWare	$4488 \mu \mathrm{~m}^{2}$	1.60 ns
Three Greedy Approach (TGA)	$5996 \mu \mathrm{~m}^{2}$	1.28 ns
Selective Expansion	$7262 \mu \mathrm{~m}^{2}$	1.02 ns

Constant Multiplication (A x 7)

A x 7	$2587 \mu^{2}$	0.85 ns
$A+2 A+4 A$	$3155 \mu^{2}$	0.72 ns
$8 A-A$	$1941 \mu \mathrm{~m}^{2}$	0.56 ns
Selective Expansion (A + 2A + 4A as input)	$3018 \mu \mathrm{~m}^{2}$	0.50 ns
Selective Expansion (8A - A as input)	$2822 \mu \mathrm{~m}^{2}$	0.52 ns

15-bit Comparator

Commercial Optimizations	$515 \mu \mathrm{~m}^{2}$	0.40 ns
Selective Expansion	$466 \mu \mathrm{~m}^{2}$	0.33 ns

Results Contd.

8x8-bit Multiplier: Delay Comparison

Bitwise Delays for 8×8 bit multiplier

Appropriate choice of Parameters

Delay and hardware area values for different implementations of a 8×8-bit multiplier generated by Selective Expansion for different values of $\varepsilon_{\text {threshold, }} \Delta_{\text {threshold }} \mathrm{K}$.

Results Contd.

$$
\begin{array}{llll}
a_{3} & a_{2} & a_{1} & a_{0} \\
b_{3} & b_{2} & b_{1} & b_{0}
\end{array}
$$

$$
a_{3} b_{0} \quad a_{2} b_{0} \quad a_{1} b_{0} \quad a_{0} b_{0}
$$

$$
a_{3} b_{1} \quad a_{2} b_{1} \quad a_{1} b_{1} \quad a_{0} b_{1}
$$

$a_{3} b_{2} \quad a_{2} b_{2} \quad a_{1} b_{2} \quad a_{0} b_{2}$
$a_{3} b_{3} \quad a_{2} b_{3} \quad a_{1} b_{3} \quad a_{0} b_{3}$
$\begin{array}{llllllll}p_{7} & p_{6} & p_{5} & p_{4} & p_{3} & p_{2} & p_{1} & p_{0}\end{array}$

$$
\begin{gathered}
p_{3}=\left(a_{0} b_{2} a_{2} b_{0}+a_{0} b_{2} a_{1} b_{1}+a_{1} b_{1} a_{2} b_{0}\right) \oplus a_{0} b_{3} \oplus a_{3} b_{0} \oplus \\
\quad a_{1} b_{2} \oplus a_{2} b_{1} \oplus a_{0} b_{0} a_{1} b_{1}\left(a_{0} b_{2} \oplus a_{1} b_{1} \oplus a_{2} b_{0}\right)
\end{gathered}
$$

Results Contd.

$a_{1} b_{2} \oplus a_{2} b_{1} \oplus a_{0} b_{0} a_{1} b_{1}\left(a_{0} b_{2} \oplus a_{1} b_{1} \oplus a_{2} b_{0}\right)$

$$
\begin{aligned}
& \text { Optimizations based on } \\
& \text { simple dependency } \\
& \begin{array}{|l|l}
\begin{array}{c}
\text { Optimizations based on } \\
\text { simple depenendency }
\end{array} \\
\hline
\end{array} \\
& a_{1} b_{2} \oplus a_{2} b_{1} \oplus a_{0} b_{0} a_{1} b_{1}\left(a_{2} \oplus \overrightarrow{b_{2}}\right) \\
& \left(a_{1} b_{2} \oplus a_{2} b_{1}\right) a_{0} b_{0} a_{1} b_{1}\left(a_{2} \oplus \overline{b_{2}}\right)=0 \\
& \left(a_{1} b_{2} \oplus a_{2} b_{1}\right)+a_{0} b_{0} a_{1} b_{1}\left(a_{2} \oplus b_{2}\right) \\
& a_{0} b_{0} a_{1} b_{1} a_{2} \bar{b}_{2} \rightarrow\left(a_{1} b_{2} \oplus a_{2} b_{1}\right) \\
& \text { Global } \\
& \text { correlation } \\
& \left(a_{1} b_{2} \oplus a_{2} b_{1}\right)+a_{0} b_{0} a_{1} b_{1}\left(a_{2}+\overline{b_{2}}\right) \\
& \text { Optimum implementation } \\
& \left(a_{1} b_{2} \oplus a_{2} b_{1}\right)+a_{0} b_{0} a_{1} b_{1}
\end{aligned}
$$

Conclusion

- We have shown that logic synthesis escapes certain kind of optimizations on XOR-dominated circuits.
- We present an algorithm which works as a front end to logic synthesis tool and transforms a given circuit into synthesis friendly circuit.
- Selective Expansion improves the speed of some arithmetic circuits such as 8×8-bit multiplier by 20% over state of art techniques.

