Optimum Prefix Adders in a Comprehensive Area, Timing and Power Design Space

Jianhua Liu¹, Yi Zhu¹, Haikun Zhu¹, John Lillis², Chung-Kuan Cheng¹

¹Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093 ²Department of Computer Science University of Illinois at Chicago Chicago, IL 60607

Outline

- Previous Works and Motivation
- □ Area/Timing/Power Model
- □ ILP Formulation of Prefix Adder
- Experimental Results
- □ Conclusions

- Parallel prefix adder is the most flexible and widely-used binary adder for ASIC designs.
- □ Prefix network formulation:

Pre-processing:
$$g_i = a_i b_i$$
 $p_i = a_i \oplus b_i$ Prefix Computation: $G_{[i:k]} = G_{[i:j]} + P_{[i:j]}G_{[j-1:k]}$ $P_{[i:k]} = P_{[i:j]}P_{[j-1:k]}$ Post-processing: $c_{i+1} = G_{[i:0]} + P_{[i:0]} \cdot c_0$ $s_i = p_i \oplus c_i$

- □ Each output network is an **alphabetical tree**:
 - Output i is the root of a binary tree covering inputs 1-i.
 - An in-depth traversal of the tree terminals follows the sequence of the inputs

<u>* Max Fanouts is based on the regular</u> buffer insertions at all empty space

□ The design space of prefix adder is considered as the tradeoff among logical levels, max fanouts and wire tracks. * Harris D. "A Taxonomy of Parallel Prefix Networks" Nov. 2003.

Logical levels: $L = \log_2 n + l$ Max fanouts : $F = 2^f + 1$ Wire tracks : $T = 2^t$ $l + f + t = \log_2 n - 1$

Timing: L×F×Dgp

(Dgp: delay of one GP adder with unit load)

Area: L×(Hgp+T×Hwt)×n

(*Hgp*: Height of one GP adder *Hwt*: Height of one wire track)

Favor the minimal logical levels

- □ Increasing impact of physical design.
- □ Power becomes a critical concern.

- Input: bit width, physical area, input arrival times, output required times.
- □ Output: placed prefix adder
- Constraint: alphabetical tree rooted at each output *i* to cover inputs *1* to *i*, area and timing requirements
- □ Objective: minimize power consumption

Models – Area Model

Distinguish physical placement from logical structure, but keep the bit-slice structure.

9

Models – Timing Model

Cload includes both gate and wire capacitance.
 Wire capacitance is proportional to wire length.

□ Use a linear timing model derived from logical effort. GP^{*i*} GP^{*r*}

 $Delay_GP^{l} = 1.5 C_{load} + 2.5$ $Delay_GP^{r} = 2.0 C_{load} + 2.5$

10

* Harris D, Sutherland I, "Logical Effort of Carry Propagate Adders", 2004.

Models – Power Model

- Total power consumption:
 Dynamic power + Static Power
- □ Static power: leakage current of device

$$P_{sta} = \lambda^s \qquad (\lambda^s = 0.5)$$

- Dynamic power: current switching capacitance $P_{dyn} = \rho \times C_{load}$
- \square ρ is the switching probability

 $\rho = j$ (j is the logical level*)

$$P_{total} = P_{dyn} + P_{sta} = j \cdot C_{load} + \lambda^{s}$$

* Vanichayobon S, etc, "Power-speed Trade-off in Parallel Prefix Circuits", 2002

ILP on Prefix Adder – Overall Picture

- We propose to formulate prefix computation as Integer Linear Programming (ILP) problem.
- Optimum solution can be produced by contemporary ILP solver.

Structure variables defines the ILP solution space

ILP – Linear Programming

Linear Programming: linear constraints, linear objective, fractional variables.

<u>LP problems are polynomial time solvable</u> (interior point algorithm, Karmarkar 1984)

ILP – Integer Linear Programming

Integer Linear Programming: all variables are integers.

ILP problem with bounded variables is NP-hard.

ILP – Branch and Bound

Brach and bound with linear relaxation algorithm in ILP solvers:

ILP – Pseudo-Linear Constraint □ A constraint is called pseudo-linear if it's not effective until some integer variables are fixed.

Problem:

ILP formulation:

Minimize: X_3 Subject to: $x_1 \ge 300$ Minimize: X_3 $x_2 \ge 500$ Subject to: $x_1 \ge 300$ $x_3 \le x_1$ $x_2 \ge 500$ $X_3 \leq X_2$ $x_3 = min(x_1, x_2)$ $x_3 \ge x_1 - 1000 b_1$ (1)LP objective: 0 $x_3 \ge x_2 - 1000 (1 - b_1) \quad (2)$ ILP objective: 300 b_1 is binary

□ Pseudo-linear constraints mostly arise from IF/ELSE scenarios

binary decision variables are introduced to indicate true or false.

ILP – Summary

- Integer Linear Programming is a powerful solution space search tool guided by Linear Programming.
- However, pseudo-linear constraints may compromise the efficiency.

- □ ILP decision variables represent GP adders and interconnects in logical view.
- □ Alphabetical tree rooted at each output.
 - Each GP adder has exact one left input and one right input. (*fanin const.*)
 - At least one input is from the previous level.
 (*logical level const.*)
 - Every GP adder roots an alphabetical tree covering a continuous segment. (*root const.*)

Variables:

- gp(i,j) {0,1}: GP adders in the $n \times d$ array (d: logical depth)
- *wl(i,j,h)* {0,1}: The wire from *(i,h)* to the left fanin of *(i,j)*
- wr(i,j,k,l) {0,1}: The wire from (k,l) to the right fanin of (i,j)

Constraints:

• (fanin const.) One left/right fanin for each GP adder

$$\sum_{h} wl(i,j,h) = gp(i,j) \qquad \forall (i,j) \quad i > h$$
$$\sum_{(k,l)} wr(i,j,k,l) = gp(i,j) \qquad \forall (i,j) \quad i > k \& j > l$$

• (*logical level const.*) At least one fanin from the previous level

$$wl(i, j, j-1) + \sum_{k} wr(i, j, k, j-1) \ge gp(i, j) \qquad \forall (i, j)$$

 The segment information is necessary for root constraint. The GP segments of two children must be adjacent.

Variables:

• *gpl(i,j), gpr(i,j)* int [1,n]:

The segment covered by *gp(i,j)* is [*gpl(i,j)*:*gpr(i,j)*]

Constraints:

• (root const.) The GP segments of two children must be adjacent $gpl(i, j) = gpl(i, h) \quad if \quad wl(i, j, h) = 1 \quad (1)$ $gpr(i, j) = gpr(k, l) \quad if \quad wr(i, j, k, l) = 1$ $gpr(i, h) = gpl(k, l) + 1 \quad if \quad wl(i, j, h) = 1 \& wr(i, j, k, l) = 1$

<u>Conditional</u> <u>constraint (1) in</u> ILP formulation:

$$gpl(i, j) \ge gpl(i, h) - n \cdot (1 - wl(i, j, h))$$
$$gpl(i, j) \le gpl(i, h) + n \cdot (1 - wl(i, j, h))$$
²⁰

- Physical position variable attached to each GP adder describes physical level.
- □ No overlap in the physical view. (*overlap const*.)

Variables:

phy(i,j) int [1,m]: The physical position of *gp(i,j)* is (*i,phy(i,j)*).
 (*m*: physical depth)

Constraints:

• (*overlap const.*) Each physical position contains at most one GP adder

 $phy(i, j) \neq phy(i, h) \qquad \forall i, j \neq h$

ILP on Prefix Adder – Example

ILP on Prefix Adder – Capacitance

- □ Gate capacitance is calculated based on logical fanouts.
 - Gate cap equals to the number of fanouts, when input cap of GP adder is 1 unit. (*gate const.*)
- □ Wire capacitance depends on physical placement.
 - Vertical wire cap is proportional to the max vertical height of each fanout. (*wire const.*)
 - Horizontal wire cap is proportional to the max horizontal width of each fanout. (*wire const.*)

ILP on Prefix Adder – Capacitance

Variables:

- Cg(i,j) float: Gate load capacitance of (i,j)
- Cwv(i,j) float: Vertical wire load capacitance of (i,j)
- *Cwh(i,j)* float: Horizontal wire load capacitance of *(i,j)*

Constraints:

(

• (gate const.) Gate load capacitance: $Cg(i, j) = \sum_{h} wl(i, h, j) + \sum_{(k,l)} wr(k, l, i, j)$ • (wire const.) Wire load capacitances: $Cwv(i, j) \ge \lambda^{w}(phy(i, h) - phy(i, j)) \quad if \quad wl(i, h, j) = 1$ $Cwv(i, j) \ge \lambda^{w}(phy(k, l) - phy(i, j)) \quad if \quad wr(k, l, i, j) = 1$ $(\lambda^{w} = 0.5)$

$$C_{wh}(i,j) \ge \lambda^{w}(k-i) \qquad \qquad if \quad wr(k,l,i,j) = 1$$

ILP on Prefix Adder – Timing

- The output time is the max path delay.
 (*output const.*)
- □ Input arrival times equal to the output times of two children. (*input const.*)
- According to the timing model, gate delay is calculated based on load capacitance.

Delay_GP^{*l*} =
$$1.5 C_{load} + 2.5$$

Delay_GP^{*r*} = $2.0 C_{load} + 2.5$

ILP on Prefix Adder – Timing

Variables:

- *TI(i,j)* float: Left input arrival time of *(i,j)*
- *Tr(i,j)* float: Right input arrival time of *(i,j)*
- *T*(*i*,*j*) float [0, *Tmax*]: Output time of (*i*,*j*)

(Tmax: Output required time.)

Constraints:

• (*input const.*) Input arrival times: Tl(i, j) = T(i, h) if wl(i, j, h) = 1Tr(i, j) = T(k, l) if wr(i, j, k, l) = 1

• (output const.) Output time:

 $T(i, j) \ge Tl(i, j) + 1.5 \cdot Cload(i, j) + 2.5$

 $T(i, j) \ge Tr(i, j) + 2.0 \cdot Cload(i, j) + 2.5$

(Cload(i, j) = Cg(i, j) + Cwv(i, j) + Cwh(i, j))

ILP on Prefix Adder – Power

- □ Total power consumption is the summation of power consumption on each GP adder.
- □ The objective is to minimize total power consumption.

Minimize:
$$\sum_{(i,j)} j \cdot Cload(i,j) + \lambda^{S} \cdot gp(i,j)$$

ILP on Prefix Adder – Example

n

Cg(2,1)=1, Cwv(2,1)=0, Cwh(2,1)=0.5 Cg(3,2)=1, Cwv(3,2)=0.5, Cwh(3,2)=0.5Cg(4,3)=0, Cwv(4,3)=0, Cwh(4,3)=0

Cload(2,1)=1.5 Cload(3,2)=2 Cload(4,3)=0

ILP on Prefix Adder – Extension

- □ Gate sizing and buffer insertion are two important optimization technologies to improve performance.
- □ Gate sizing: decrease gate delay, increase input capacitance.
- Buffer insertion: introduce new element, impact placement.
- □ Gate sizing and buffer insertion can be supported by ILP formulation.

Experimental Results

- □ Optimum prefix adders solved by CPLEX 9.1
- □ 8-bit prefix adders
 - Uniform input arrival time
 - Non-uniform input arrival time
- □ Hierarchical 64-bit prefix adders
- 64-bit prefix adder implementation (Synopsys flow, TSMC 90nm technology)
 - Module Compiler
 - Astro
 - Prime Power

Experimental Results – 8-bit Uniform

Method	Timing	Depth	Power	CPU	Method	Timing	Depth	Power	CPU
	(D _{FO4})		(P _{FO4})	(s)		(D _{FO4})		(P _{FO4})	(s)
ILP	10.0	1	20.1	0.31	K-S	6.2	3	29.0	-
ILP	10.0	2	17.5	124	ILP	6.0	2	20.9	259
ILP (S)	9.0	1	25.6	2.83	ILP	5.6	2	22.9	45.7
ILP	9.0	2	17.5	83.4	ILP (S)	5.6	2	21.6	756
ILP (S)	8.6	1	27.6	1.28	ILP	5.6	3	21.9	1237
ILP	8.6	2	17.5	93.2	ILP (S)	5.0	2	23.6	1208
B-K	7.8	3	19.9	-	ILP	5.0	3	25.6	4563
ILP	7.6	2	18.0	112	ILP	4.6	3	26.1	7439
ILP	7.0	2	18.6	99.6	ILP (S)	4.2	3	27.9	9654
Skl	6.8	3	20.8	-	ILP (S)	4.0	4	36.4	20211

* (S): Gate sizing, B-K: Brent-Kung, Skl: Sklansky, K-S: Kogge-Stone

Experimental Results- 8-bit Uniform

32

Experimental Results – 8-bit Uniform

□ Some typical ILP results:

All the 8-bit fastest prefix adders have 4 logical levels

Experimental Results – 8-bit Non-Uniform

Case	Power	Depth	Power*	Depth*
Increasing arrival times	20.8	3	26.1	3
Decreasing arrival times	25.1	3	26.1	3
Convex arrival times	21.6	2	23.6	3

* Use the worst input arrival time for all inputs

□ For high bit-width application, ILP method can be applied in a hierarchical design strategy.

Hierarchical ILP designs in solution space:
 (The physical depth is set to 6)

Method	Timing	Power	Method	Timing	Power
	(D _{FO4})	(P _{FO4})		(D _{FO4})	(P _{FO4})
Hierarchical ILP	28	369	Hierarchical ILP	18	386
Brent-Kung	27	473	Sklansky	17	492
Hierarchical ILP	26	370	Hierarchical ILP	16	402
Hierarchical ILP	24	373	Hierarchical ILP	15	416
Hierarchical ILP	22	375	Kogge-Stone	15	3032
Hierarchical ILP	20	379	Hierarchical ILP	14	473

□ The fastest 64-bit hierarchical ILP adder:

Experimental Results – 64-bit Implementation

64-bit ILP prefix adders compared with 64-bit fast prefix adders generated by Module Compiler with relative placement.

	ILP	Mod	Power Saving [Wire] (%)	
Timing (ns)Total Power[Wire Power] (mW)		Timing (ns)		
0.74	1.9 [0.93]	0.75	4.9 [2.8]	61% [67%]
0.76	1.8 [0.90]	0.83	3.5 [2.1]	49% [57%]
1.13	1.15 [0.65]	1.24	2.3 [1.5]	50% [57%]

Experimental Results – 64-bit Implementation

64-bit ILP Prefix Adder Physical View

64-bit MC Prefix Adder Physical View

Conclusions

- □ We propose an ILP method to solve minimal power prefix adders.
- The comprehensive area/timing/power model involves physical placement, gate/wire capacitance and static/dynamic power consumption.
- □ The ILP method can handle gate sizing, buffer insertion for both uniform and non-uniform input arrival time applications.
- The ILP method can be applied in hierarchical design methodology for high bit-width applications.

