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Previous Works and Motivation
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Parallel prefix adder is the most flexible and 
widely-used binary adder for ASIC designs.
Prefix network formulation:
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Each output network is an alphabetical tree:
Output i is the root of a binary tree covering inputs 1-i.
An in-depth traversal of the tree terminals follows the 
sequence of the inputs
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Brent-Kung:
Logical levels: 2log2n–1 
Max fanouts: 2
Wire tracks: 1

* Max Fanouts is based on the regular 
buffer insertions at all empty space   

Kogge-Stone:
Logical levels: log2n
Max fanouts: 2
Wire tracks: n/2

Sklansky:
Logical levels: log2n
Max fanouts: n/2
Wire tracks: 1
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The design space of prefix adder is considered as the 
tradeoff among logical levels, max fanouts and wire 
tracks. * Harris D, ”A Taxonomy of Parallel Prefix Networks” Nov. 2003.

Logical 
Levels

Wire Tracks

Max 
Fanout

1log
2 :     tracksWire

12 :   fanoutsMax 

log :levels Logical

2

2

−=++
=

+=

+=

ntfl
T
F

lnL

t

f

Timing: L×F×Dgp
(Dgp: delay of one GP adder with unit load)

Area: L×(Hgp+T×Hwt)×n
(Hgp: Height of one GP adder
Hwt:  Height of one wire track)

Favor the minimal logical levels

Previous Works and Motivation
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Logical 
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time
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Increasing impact of physical design.

Power

Static power

Dynamic 
power

Power 
gating

Activity 
Probability

Power becomes a critical concern.

Previous Works and Motivation
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Input: bit width, physical area, input arrival 
times, output required times.
Output: placed prefix adder 
Constraint: alphabetical tree rooted at each 
output i to cover inputs 1 to i, 
area and timing requirements
Objective: minimize power consumption 

Previous Works and Motivation
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Models – Area Model

Distinguish physical placement from logical 
structure, but keep the bit-slice structure. 

Logical view of 
Brent-Kung adder

Physical view of 
Brent-Kung adder

Bit position

Logical level

Bit position

P
hysical level

Compact placement

mnA ×= n: Bit width
m: Physical depth
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Models – Timing Model

Use a linear timing model derived from logical 
effort. GPl GPr

GP

Delay_GPl = 1.5 Cload + 2.5
Delay_GPr = 2.0 Cload + 2.5

Cload includes both gate and wire capacitance. 
Wire capacitance is proportional to wire length.

logical 
connection

bounding box

real wire

Cload = Cwire + Cgate
Cwire = λw × (Hbb + Wbb)
Cgate = Σ Cin

Wbb

Hbb

(λw = 0.5)

* Harris D, Sutherland I, ”Logical Effort of Carry Propagate Adders”, 2004.
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Models – Power Model
Total power consumption: 

Dynamic power + Static Power
Static power: leakage current of device

Psta = λs

Dynamic power: current switching capacitance
Pdyn = ρ × Cload

ρ is the switching probability
ρ = j (j is the logical level*)

s
loadstadyntotal CjPPP λ+⋅=+=

(λs = 0.5)

* Vanichayobon S, etc, “Power-speed Trade-off in Parallel Prefix Circuits”, 2002
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ILP on Prefix Adder – Overall Picture

Structure variables: 
•GP adders
•Connections
•Physical positions

Capacitance variables: 
•Gate cap
•Vertical wire cap
•Horizontal wire cap

Timing variables: 
•Input arrival time
•Output arrival time

Power objective

Structure variables defines the ILP solution space

We propose to formulate prefix computation as 
Integer Linear Programming (ILP) problem. 
Optimum solution can be produced by 
contemporary ILP solver. 
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ILP – Linear Programming

Linear Programming: linear constraints, linear 
objective, fractional variables. 

Maximize: x1 + 2 x2 + 3 x3
subject to: - x1 + x2 + x3 ≤ 20

x1 – 3 x2 ≤ 30
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LP problems are polynomial time solvable 
(interior point algorithm, Karmarkar 1984)
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ILP – Integer Linear Programming

Integer Linear Programming: all variables 
are integers.

Objective

LP Optimal

Constraints

ILP Optimal
(“nearest” feasible 

integer solution)

ILP problem with bounded variables is NP-hard.
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ILP – Branch and Bound 

Brach and bound with linear relaxation 
algorithm in ILP solvers:

Minimize F(b1, b2, b3, b4, f1,…)

bi is binary

0
Root (all vars are fractional)

b1

b2

b3

b4

2

‘0’ ‘1’
infeasible

‘0’ ‘1’

3
feasible

(current 
best)

infeasible

It is VERY helpful if ILP objective 
is close to LP objective

2
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3 2
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55
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Cut

2 Bound 
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ILP – Pseudo-Linear Constraint

Minimize:     x3
Subject to:   x1 ≥ 300

x2 ≥ 500
x3 = min(x1, x2)

Minimize:     x3
Subject to:   x1 ≥ 300

x2 ≥ 500
x3 ≤ x1
x3 ≤ x2
x3 ≥ x1 – 1000 b1 (1)
x3 ≥ x2 – 1000 (1 – b1) (2)
b1 is binary

Problem: ILP formulation:

LP objective: 0

ILP objective: 300

A constraint is called pseudo-linear if it’s not effective 
until some integer variables are fixed. 

Pseudo-linear constraints mostly arise from IF/ELSE scenarios
binary decision variables are introduced to indicate true or false. 
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ILP – Summary

Integer Linear Programming is a 
powerful solution space search tool 
guided by Linear Programming. 
However, pseudo-linear constraints 
may compromise the efficiency.
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ILP on Prefix Adder – Structure

ILP decision variables represent GP adders 
and interconnects in logical view.
Alphabetical tree rooted at each output.

Each GP adder has exact one left input and one 
right input. (fanin const.)
At least one input is from the previous level. 
(logical level const.)
Every GP adder roots an alphabetical tree 
covering a continuous segment. (root const.) 
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Constraints:
• (fanin const.) One left/right fanin for each GP adder 

• (logical level const.) At least one fanin from the previous level
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ILP on Prefix Adder – Structure

∑ 1)1,,(

Variables:
• gp(i,j) {0,1}:      GP adders in the n × d array (d: logical depth)

• wl(i,j,h) {0,1}:    The wire from (i,h) to the left fanin of (i,j)

• wr(i,j,k,l) {0,1}:  The wire from (k,l) to the right fanin of (i,j)
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ILP on Prefix Adder – Structure
The segment information is necessary for root 
constraint. The GP segments of two children must 
be adjacent.

),(),( higpljigpl = )1(1),,( =hjiwlif
),(),( lkgprjigpr =

1),(),( += lkgplhigpr
1),,,( =lkjiwrif

1),,,(&1),,( == lkjiwrhjiwlif

Variables:
• gpl(i,j), gpr(i,j)  int [1,n]:  

The segment covered by gp(i,j) is [gpl(i,j):gpr(i,j)]
Constraints:

• (root const.) The GP segments of two children must be adjacent

)),,(1(),(),(
)),,(1(),(),(

hjiwlnhigpljigpl
hjiwlnhigpljigpl

−⋅+≤
−⋅−≥Conditional 

constraint (1) in 
ILP formulation:
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Physical position variable attached to each GP 
adder describes physical level.
No overlap in the physical view. (overlap const.)

ILP on Prefix Adder – Structure

hjihiphyjiphy ≠∀≠ ,),(),(

Variables:
• phy(i,j) int [1,m]:  The physical position of gp(i,j) is (i,phy(i,j)).

(m: physical depth)
Constraints:

• (overlap const.) Each physical position contains at most 
one GP adder
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ILP on Prefix Adder – Example

1234
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Logical view
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Physical view

gp(2,1)=1, wl(2,1,0)=1, wr(2,1,1,0)=1
gp(3,2)=1, wl(3,2,0)=1, wr(3,2,2,1)=1
gp(4,3)=1, wl(4,3,0)=1, wr(4,3,3,2)=1

[gpl(2,1):gpr(2,1)] = [2:1]
[gpl(3,2):gpr(3,2)] = [3:1]
[gpl(4,3):gpr(4:3)] = [4:1]

phy(2,1)=1
phy(3,2)=1
phy(4,3)=2

n

d

n

m



23

ILP on Prefix Adder – Capacitance
Gate capacitance is calculated based on logical 
fanouts. 

Gate cap equals to the number of fanouts, when 
input cap of GP adder is 1 unit. (gate const.)

Wire capacitance depends on physical 
placement.

Vertical wire cap is proportional to the max vertical 
height of each fanout. (wire const.) 
Horizontal wire cap is proportional to the max 
horizontal width of each fanout. (wire const.)
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Constraints:
• (gate const.) Gate load capacitance: 

• (wire const.) Wire load capacitances:

ILP on Prefix Adder – Capacitance
Variables:

• Cg(i,j) float:      Gate load capacitance of (i,j)

• Cwv(i,j) float:    Vertical wire load capacitance of (i,j)

• Cwh(i,j) float:    Horizontal wire load capacitance of (i,j)
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ILP on Prefix Adder – Timing

The output time is the max path delay. 
(output const.) 
Input arrival times equal to the output times 
of two children. (input const.)
According to the timing model, gate delay is 
calculated based on load capacitance.

Delay_GPl = 1.5 Cload + 2.5
Delay_GPr = 2.0 Cload + 2.5
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Constraints:
• (input const.) Input arrival times: 

• (output const.) Output time:

Variables:

ILP on Prefix Adder – Timing

• Tl(i,j) float:                 Left input arrival time of (i,j)

• Tr(i,j) float: Right input arrival time of (i,j)

• T(i,j) float [0,Tmax]:   Output time of (i,j)
(Tmax: Output required time.)
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ILP on Prefix Adder – Power

:Minimize

Total power consumption is the summation 
of power  consumption on each GP adder. 
The objective is to minimize total power 
consumption. 

),(),(
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ji
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ILP on Prefix Adder – Example
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Logical view

1234
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0

12:13:14:1
Physical view

Cg(2,1)=1, Cwv(2,1)=0, Cwh(2,1)=0.5
Cg(3,2)=1, Cwv(3,2)=0.5, Cwh(3,2)=0.5
Cg(4,3)=0, Cwv(4,3)=0, Cwh(4,3)=0

n

d

n

m

Cload(2,1)=1.5
Cload(3,2)=2
Cload(4,3)=0

Tl(2,1)=0, Tr(2,1)=0, 
T(2,1)=0+2×1.5+2.5=5.5
Tl(3,2)=0, Tr(3,2)=5.5, 
T(3,2)=5.5+2×2+2.5=12
Tl(4,3)=0, Tr(4,3)=12, 
T(4,3)=12+2×0+2.5=14.5

Power = 1×Cload(2,1) +
2×Cload(3,2) +
3×Cload(4,3) +
3×3 = 14.5
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ILP on Prefix Adder – Extension

Gate sizing and buffer insertion are two 
important optimization technologies to 
improve performance.
Gate sizing: decrease gate delay, increase 
input capacitance.
Buffer insertion: introduce new element, 
impact placement.
Gate sizing and buffer insertion can be 
supported by ILP formulation.



30

Experimental Results
Optimum prefix adders solved by CPLEX 9.1
8-bit prefix adders

Uniform input arrival time
Non-uniform input arrival time

Hierarchical 64-bit prefix adders
64-bit prefix adder implementation (Synopsys 
flow, TSMC 90nm technology)

Module Compiler
Astro
Prime Power
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Experimental Results – 8-bit Uniform

Method Timing
(DFO4)

Depth Power
(PFO4)

CPU
(s)

Method Timing
(DFO4)

Depth Power
(PFO4)

CPU
(s)

ILP         10.0 1 20.1 0.31 K-S 6.2 3 29.0 -

ILP         10.0 2 17.5 124 ILP         6.0 2 20.9 259  

ILP (S) 9.0 1 25.6 2.83 ILP         5.6 2 22.9 45.7 

ILP         9.0 2 17.5 83.4 ILP (S) 5.6 2 21.6 756  

ILP (S) 8.6 1 27.6 1.28 ILP         5.6 3 21.9 1237 

ILP         8.6 2 17.5 93.2 ILP (S) 5.0 2 23.6 1208 

B-K  7.8 3 19.9 - ILP         5.0 3 25.6 4563 

ILP         7.6 2 18.0 112 ILP         4.6 3 26.1 7439 

ILP         7.0 2 18.6 99.6 ILP (S) 4.2 3 27.9 9654 

Skl 6.8 3 20.8 - ILP (S) 4.0 4 36.4 20211

* (S): Gate sizing, B-K: Brent-Kung, Skl: Sklansky, K-S: Kogge-Stone
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Experimental Results– 8-bit Uniform
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Fastest depth2 Fastest depth4

Some typical ILP results:

Experimental Results – 8-bit Uniform

All the 8-bit fastest prefix adders have 4 logical levels

Fastest depth3
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Experimental Results – 8-bit Non-Uniform

Case Power Depth Power* Depth*

Increasing arrival times 20.8 3

3

2

26.1 3

Decreasing arrival times 25.1 26.1 3

Convex arrival times 21.6 23.6 3

* Use the worst input arrival time for all inputs

Increasing arrival times Decreasing arrival times Convex arrival times
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Experimental Results – 64-bit Hierarchical

For high bit-width application, ILP method can be 
applied in a hierarchical design strategy.
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Experimental Results – 64-bit Hierarchical

Hierarchical ILP designs in solution space:
(The physical depth is set to 6)

Method Timing
(DFO4)

Power
(PFO4)

Method Timing
(DFO4)

Power
(PFO4)

Hierarchical ILP 28 369 Hierarchical ILP 18 386  

Brent-Kung 27 473 Sklansky 17 492  

Hierarchical ILP 26 370 Hierarchical ILP 16 402  

Hierarchical ILP 24 373 Hierarchical ILP 15 416  

Hierarchical ILP 22 375 Kogge-Stone 15 3032 

Hierarchical ILP 20 379 Hierarchical ILP 14 473 



37The power of Kogge-Stone add is much 
larger than other prefix adders.

Experimental Results – 64-bit Hierarchical
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The fastest 64-bit hierarchical ILP adder:

Hierarchical ILP – level 1
(Physical view)

Hierarchical ILP – level 2
(Physical view)

(×8)

(×8)

Experimental Results – 64-bit Hierarchical
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Experimental Results – 64-bit Implementation

64-bit ILP prefix adders compared with 64-bit fast 
prefix adders generated by Module Compiler with 
relative placement.

ILP Module Compiler

Timing (ns) Total Power
[Wire Power] (mW)

Timing (ns) Total Power
[Wire Power] (mW)

Power
Saving

[Wire] (%)

0.74 1.9 [0.93] 0.75 4.9 [2.8] 61% [67%]

0.76 1.8 [0.90] 0.83 3.5 [2.1] 49% [57%]

1.13 1.15 [0.65] 1.24 2.3 [1.5] 50% [57%]



40

Experimental Results – 64-bit Implementation

64-bit ILP Prefix Adder Physical View

64-bit MC Prefix Adder Physical View
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Conclusions
We propose an ILP method to solve minimal 
power prefix adders.
The comprehensive area/timing/power model 
involves physical placement, gate/wire capacitance 
and static/dynamic power consumption.
The ILP method can handle gate sizing, buffer 
insertion for both uniform and non-uniform input 
arrival time applications. 
The ILP method can be applied in hierarchical 
design methodology for high bit-width 
applications.
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