
1

Optimum Prefix Adders in a
Comprehensive Area, Timing
and Power Design Space

Jianhua Liu1, Yi Zhu1, Haikun Zhu1,
John Lillis2, Chung-Kuan Cheng1

1Department of Computer
Science and Engineering

University of California, San Diego
La Jolla, CA 92093

2Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607

2

Outline
Previous Works and Motivation
Area/Timing/Power Model
ILP Formulation of Prefix Adder
Experimental Results
Conclusions

3

Previous Works and Motivation

iii

iii

bap
bag
⊕=

=Pre-processing:

Post-processing:

Prefix Computation:

iii

iii

cps
cPGc

⊕=

⋅+=+ 0]0:[]0:[1

]:1[]:[]:[

]:1[]:[]:[]:[

kjjiki

kjjijiki

PPP

GPGG

−

−

=

+=

Parallel prefix adder is the most flexible and
widely-used binary adder for ASIC designs.
Prefix network formulation:

4

Each output network is an alphabetical tree:
Output i is the root of a binary tree covering inputs 1-i.
An in-depth traversal of the tree terminals follows the
sequence of the inputs

1234

12:13:14:1

1

2

3

0
1234

12:13:14:1

1

2

3

0

j

(a) (b)

Previous Works and Motivation

5

Brent-Kung:
Logical levels: 2log2n–1
Max fanouts: 2
Wire tracks: 1

* Max Fanouts is based on the regular
buffer insertions at all empty space

Kogge-Stone:
Logical levels: log2n
Max fanouts: 2
Wire tracks: n/2

Sklansky:
Logical levels: log2n
Max fanouts: n/2
Wire tracks: 1

12345678

12:13:14:16:17:18:1 5:1

*

Previous Works and Motivation
12345678

12:13:14:16:17:18:1 5:1

12345678

12:13:14:16:17:18:1 5:1

6

The design space of prefix adder is considered as the
tradeoff among logical levels, max fanouts and wire
tracks. * Harris D, ”A Taxonomy of Parallel Prefix Networks” Nov. 2003.

Logical
Levels

Wire Tracks

Max
Fanout

1log
2 : tracksWire

12 : fanoutsMax

log :levels Logical

2

2

−=++
=

+=

+=

ntfl
T
F

lnL

t

f

Timing: L×F×Dgp
(Dgp: delay of one GP adder with unit load)

Area: L×(Hgp+T×Hwt)×n
(Hgp: Height of one GP adder
Hwt: Height of one wire track)

Favor the minimal logical levels

Previous Works and Motivation

7

Logical
Levels

Wire Tracks

Fanouts

Area

Physical
placement

Detail routing

New
Design
Scope

Timing

Gate Cap

Wire Cap

Gate sizing
Buffer

insertion
Signal slope

Input arrival
time

Output
require time

Increasing impact of physical design.

Power

Static power

Dynamic
power

Power
gating

Activity
Probability

Power becomes a critical concern.

Previous Works and Motivation

8

Input: bit width, physical area, input arrival
times, output required times.
Output: placed prefix adder
Constraint: alphabetical tree rooted at each
output i to cover inputs 1 to i,
area and timing requirements
Objective: minimize power consumption

Previous Works and Motivation

9

Models – Area Model

Distinguish physical placement from logical
structure, but keep the bit-slice structure.

Logical view of
Brent-Kung adder

Physical view of
Brent-Kung adder

Bit position

Logical level

Bit position

P
hysical level

Compact placement

mnA ×= n: Bit width
m: Physical depth

10

Models – Timing Model

Use a linear timing model derived from logical
effort. GPl GPr

GP

Delay_GPl = 1.5 Cload + 2.5
Delay_GPr = 2.0 Cload + 2.5

Cload includes both gate and wire capacitance.
Wire capacitance is proportional to wire length.

logical
connection

bounding box

real wire

Cload = Cwire + Cgate
Cwire = λw × (Hbb + Wbb)
Cgate = Σ Cin

Wbb

Hbb

(λw = 0.5)

* Harris D, Sutherland I, ”Logical Effort of Carry Propagate Adders”, 2004.

11

Models – Power Model
Total power consumption:

Dynamic power + Static Power
Static power: leakage current of device

Psta = λs

Dynamic power: current switching capacitance
Pdyn = ρ × Cload

ρ is the switching probability
ρ = j (j is the logical level*)

s
loadstadyntotal CjPPP λ+⋅=+=

(λs = 0.5)

* Vanichayobon S, etc, “Power-speed Trade-off in Parallel Prefix Circuits”, 2002

12

ILP on Prefix Adder – Overall Picture

Structure variables:
•GP adders
•Connections
•Physical positions

Capacitance variables:
•Gate cap
•Vertical wire cap
•Horizontal wire cap

Timing variables:
•Input arrival time
•Output arrival time

Power objective

Structure variables defines the ILP solution space

We propose to formulate prefix computation as
Integer Linear Programming (ILP) problem.
Optimum solution can be produced by
contemporary ILP solver.

13

ILP – Linear Programming

Linear Programming: linear constraints, linear
objective, fractional variables.

Maximize: x1 + 2 x2 + 3 x3
subject to: - x1 + x2 + x3 ≤ 20

x1 – 3 x2 ≤ 30

⎥
⎦

⎤
⎢
⎣

⎡
≤

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−
30
20

031
111

3

2

1

x
x
x

Objective

LP Optimal

Constraints

Solution
Space

LP problems are polynomial time solvable
(interior point algorithm, Karmarkar 1984)

14

ILP – Integer Linear Programming

Integer Linear Programming: all variables
are integers.

Objective

LP Optimal

Constraints

ILP Optimal
(“nearest” feasible

integer solution)

ILP problem with bounded variables is NP-hard.

15

ILP – Branch and Bound

Brach and bound with linear relaxation
algorithm in ILP solvers:

Minimize F(b1, b2, b3, b4, f1,…)

bi is binary

0
Root (all vars are fractional)

b1

b2

b3

b4

2

‘0’ ‘1’
infeasible

‘0’ ‘1’

3
feasible

(current
best)

infeasible

It is VERY helpful if ILP objective
is close to LP objective

2

‘0’ ‘1’

4

‘0’ ‘1’

3 2

4

55
‘0’ ‘1’

Cut

2 Bound
(Smallest candidate)

16

ILP – Pseudo-Linear Constraint

Minimize: x3
Subject to: x1 ≥ 300

x2 ≥ 500
x3 = min(x1, x2)

Minimize: x3
Subject to: x1 ≥ 300

x2 ≥ 500
x3 ≤ x1
x3 ≤ x2
x3 ≥ x1 – 1000 b1 (1)
x3 ≥ x2 – 1000 (1 – b1) (2)
b1 is binary

Problem: ILP formulation:

LP objective: 0

ILP objective: 300

A constraint is called pseudo-linear if it’s not effective
until some integer variables are fixed.

Pseudo-linear constraints mostly arise from IF/ELSE scenarios
binary decision variables are introduced to indicate true or false.

17

ILP – Summary

Integer Linear Programming is a
powerful solution space search tool
guided by Linear Programming.
However, pseudo-linear constraints
may compromise the efficiency.

18

ILP on Prefix Adder – Structure

ILP decision variables represent GP adders
and interconnects in logical view.
Alphabetical tree rooted at each output.

Each GP adder has exact one left input and one
right input. (fanin const.)
At least one input is from the previous level.
(logical level const.)
Every GP adder roots an alphabetical tree
covering a continuous segment. (root const.)

19

Constraints:
• (fanin const.) One left/right fanin for each GP adder

• (logical level const.) At least one fanin from the previous level

ljki(i,j)gp(i,j))wr(i,j,k,l

hi(i,j)gp(i,j)wl(i,j,h)

(k,l)

h

>>∀=

>∀=

∑

∑
&

(i,j)gp(i,j))wr(i,j,k,jjjiwl
k

∀≥−+−

ILP on Prefix Adder – Structure

∑ 1)1,,(

Variables:
• gp(i,j) {0,1}: GP adders in the n × d array (d: logical depth)

• wl(i,j,h) {0,1}: The wire from (i,h) to the left fanin of (i,j)

• wr(i,j,k,l) {0,1}: The wire from (k,l) to the right fanin of (i,j)

20

ILP on Prefix Adder – Structure
The segment information is necessary for root
constraint. The GP segments of two children must
be adjacent.

),(),(higpljigpl =)1(1),,(=hjiwlif
),(),(lkgprjigpr =

1),(),(+= lkgplhigpr
1),,,(=lkjiwrif

1),,,(&1),,(== lkjiwrhjiwlif

Variables:
• gpl(i,j), gpr(i,j) int [1,n]:

The segment covered by gp(i,j) is [gpl(i,j):gpr(i,j)]
Constraints:

• (root const.) The GP segments of two children must be adjacent

)),,(1(),(),(
)),,(1(),(),(

hjiwlnhigpljigpl
hjiwlnhigpljigpl

−⋅+≤
−⋅−≥Conditional

constraint (1) in
ILP formulation:

21

Physical position variable attached to each GP
adder describes physical level.
No overlap in the physical view. (overlap const.)

ILP on Prefix Adder – Structure

hjihiphyjiphy ≠∀≠ ,),(),(

Variables:
• phy(i,j) int [1,m]: The physical position of gp(i,j) is (i,phy(i,j)).

(m: physical depth)
Constraints:

• (overlap const.) Each physical position contains at most
one GP adder

22

ILP on Prefix Adder – Example

1234

12:13:14:1

1

2

3

i

j
0

Logical view

1234

1

2

0

12:13:14:1

Physical view

gp(2,1)=1, wl(2,1,0)=1, wr(2,1,1,0)=1
gp(3,2)=1, wl(3,2,0)=1, wr(3,2,2,1)=1
gp(4,3)=1, wl(4,3,0)=1, wr(4,3,3,2)=1

[gpl(2,1):gpr(2,1)] = [2:1]
[gpl(3,2):gpr(3,2)] = [3:1]
[gpl(4,3):gpr(4:3)] = [4:1]

phy(2,1)=1
phy(3,2)=1
phy(4,3)=2

n

d

n

m

23

ILP on Prefix Adder – Capacitance
Gate capacitance is calculated based on logical
fanouts.

Gate cap equals to the number of fanouts, when
input cap of GP adder is 1 unit. (gate const.)

Wire capacitance depends on physical
placement.

Vertical wire cap is proportional to the max vertical
height of each fanout. (wire const.)
Horizontal wire cap is proportional to the max
horizontal width of each fanout. (wire const.)

24

Constraints:
• (gate const.) Gate load capacitance:

• (wire const.) Wire load capacitances:

ILP on Prefix Adder – Capacitance
Variables:

• Cg(i,j) float: Gate load capacitance of (i,j)

• Cwv(i,j) float: Vertical wire load capacitance of (i,j)

• Cwh(i,j) float: Horizontal wire load capacitance of (i,j)

∑∑ +=
),(

),,,(),,(),(
lkh

jilkwrjhiwljiCg

)(),(
)),(),((),(
)),(),((),(

ikjiCwh
jiphylkphyjiCwv
jiphyhiphyjiCwv

w

w

w

−≥

−≥

−≥

λ

λ

λ

1),,,(
1),,,(

1),,(

=
=

=

jilkwrif
jilkwrif

jhiwlif (λw = 0.5)

25

ILP on Prefix Adder – Timing

The output time is the max path delay.
(output const.)
Input arrival times equal to the output times
of two children. (input const.)
According to the timing model, gate delay is
calculated based on load capacitance.

Delay_GPl = 1.5 Cload + 2.5
Delay_GPr = 2.0 Cload + 2.5

26

Constraints:
• (input const.) Input arrival times:

• (output const.) Output time:

Variables:

ILP on Prefix Adder – Timing

• Tl(i,j) float: Left input arrival time of (i,j)

• Tr(i,j) float: Right input arrival time of (i,j)

• T(i,j) float [0,Tmax]: Output time of (i,j)
(Tmax: Output required time.)

),(),(
),(),(
lkTjiTr

hiTjiTl
=
=

1),,,(
1),,(
=

=
lkjiwrif

hjiwlif

)),(),(),(),((
5.2),(0.2),(),(
5.2),(5.1),(),(

jiCwhjiCwvjiCgjiCload
jiCloadjiTrjiT
jiCloadjiTljiT

++=
+⋅+≥
+⋅+≥

27

ILP on Prefix Adder – Power

:Minimize

Total power consumption is the summation
of power consumption on each GP adder.
The objective is to minimize total power
consumption.

),(),(
),(

jigpjiCloadj S

ji
⋅+⋅∑ λ

28

ILP on Prefix Adder – Example

1234

12:13:14:1

1

2

3

i

j
0

Logical view

1234

1

2

0

12:13:14:1
Physical view

Cg(2,1)=1, Cwv(2,1)=0, Cwh(2,1)=0.5
Cg(3,2)=1, Cwv(3,2)=0.5, Cwh(3,2)=0.5
Cg(4,3)=0, Cwv(4,3)=0, Cwh(4,3)=0

n

d

n

m

Cload(2,1)=1.5
Cload(3,2)=2
Cload(4,3)=0

Tl(2,1)=0, Tr(2,1)=0,
T(2,1)=0+2×1.5+2.5=5.5
Tl(3,2)=0, Tr(3,2)=5.5,
T(3,2)=5.5+2×2+2.5=12
Tl(4,3)=0, Tr(4,3)=12,
T(4,3)=12+2×0+2.5=14.5

Power = 1×Cload(2,1) +
2×Cload(3,2) +
3×Cload(4,3) +
3×3 = 14.5

29

ILP on Prefix Adder – Extension

Gate sizing and buffer insertion are two
important optimization technologies to
improve performance.
Gate sizing: decrease gate delay, increase
input capacitance.
Buffer insertion: introduce new element,
impact placement.
Gate sizing and buffer insertion can be
supported by ILP formulation.

30

Experimental Results
Optimum prefix adders solved by CPLEX 9.1
8-bit prefix adders

Uniform input arrival time
Non-uniform input arrival time

Hierarchical 64-bit prefix adders
64-bit prefix adder implementation (Synopsys
flow, TSMC 90nm technology)

Module Compiler
Astro
Prime Power

31

Experimental Results – 8-bit Uniform

Method Timing
(DFO4)

Depth Power
(PFO4)

CPU
(s)

Method Timing
(DFO4)

Depth Power
(PFO4)

CPU
(s)

ILP 10.0 1 20.1 0.31 K-S 6.2 3 29.0 -

ILP 10.0 2 17.5 124 ILP 6.0 2 20.9 259

ILP (S) 9.0 1 25.6 2.83 ILP 5.6 2 22.9 45.7

ILP 9.0 2 17.5 83.4 ILP (S) 5.6 2 21.6 756

ILP (S) 8.6 1 27.6 1.28 ILP 5.6 3 21.9 1237

ILP 8.6 2 17.5 93.2 ILP (S) 5.0 2 23.6 1208

B-K 7.8 3 19.9 - ILP 5.0 3 25.6 4563

ILP 7.6 2 18.0 112 ILP 4.6 3 26.1 7439

ILP 7.0 2 18.6 99.6 ILP (S) 4.2 3 27.9 9654

Skl 6.8 3 20.8 - ILP (S) 4.0 4 36.4 20211

* (S): Gate sizing, B-K: Brent-Kung, Skl: Sklansky, K-S: Kogge-Stone

32

Experimental Results– 8-bit Uniform

33

Fastest depth2 Fastest depth4

Some typical ILP results:

Experimental Results – 8-bit Uniform

All the 8-bit fastest prefix adders have 4 logical levels

Fastest depth3

34

Experimental Results – 8-bit Non-Uniform

Case Power Depth Power* Depth*

Increasing arrival times 20.8 3

3

2

26.1 3

Decreasing arrival times 25.1 26.1 3

Convex arrival times 21.6 23.6 3

* Use the worst input arrival time for all inputs

Increasing arrival times Decreasing arrival times Convex arrival times

35

Experimental Results – 64-bit Hierarchical

For high bit-width application, ILP method can be
applied in a hierarchical design strategy.

36

Experimental Results – 64-bit Hierarchical

Hierarchical ILP designs in solution space:
(The physical depth is set to 6)

Method Timing
(DFO4)

Power
(PFO4)

Method Timing
(DFO4)

Power
(PFO4)

Hierarchical ILP 28 369 Hierarchical ILP 18 386

Brent-Kung 27 473 Sklansky 17 492

Hierarchical ILP 26 370 Hierarchical ILP 16 402

Hierarchical ILP 24 373 Hierarchical ILP 15 416

Hierarchical ILP 22 375 Kogge-Stone 15 3032

Hierarchical ILP 20 379 Hierarchical ILP 14 473

37The power of Kogge-Stone add is much
larger than other prefix adders.

Experimental Results – 64-bit Hierarchical

38

The fastest 64-bit hierarchical ILP adder:

Hierarchical ILP – level 1
(Physical view)

Hierarchical ILP – level 2
(Physical view)

(×8)

(×8)

Experimental Results – 64-bit Hierarchical

39

Experimental Results – 64-bit Implementation

64-bit ILP prefix adders compared with 64-bit fast
prefix adders generated by Module Compiler with
relative placement.

ILP Module Compiler

Timing (ns) Total Power
[Wire Power] (mW)

Timing (ns) Total Power
[Wire Power] (mW)

Power
Saving

[Wire] (%)

0.74 1.9 [0.93] 0.75 4.9 [2.8] 61% [67%]

0.76 1.8 [0.90] 0.83 3.5 [2.1] 49% [57%]

1.13 1.15 [0.65] 1.24 2.3 [1.5] 50% [57%]

40

Experimental Results – 64-bit Implementation

64-bit ILP Prefix Adder Physical View

64-bit MC Prefix Adder Physical View

41

Conclusions
We propose an ILP method to solve minimal
power prefix adders.
The comprehensive area/timing/power model
involves physical placement, gate/wire capacitance
and static/dynamic power consumption.
The ILP method can handle gate sizing, buffer
insertion for both uniform and non-uniform input
arrival time applications.
The ILP method can be applied in hierarchical
design methodology for high bit-width
applications.

42

	Optimum Prefix Adders in a Comprehensive Area, Timing �and Power Design Space
	Outline
	Previous Works and Motivation
	Previous Works and Motivation
	Previous Works and Motivation
	Previous Works and Motivation
	Previous Works and Motivation
	Previous Works and Motivation
	Models – Area Model
	Models – Timing Model
	Models – Power Model
	ILP on Prefix Adder – Overall Picture
	ILP – Linear Programming
	ILP – Integer Linear Programming
	ILP – Branch and Bound
	ILP – Pseudo-Linear Constraint
	ILP – Summary
	ILP on Prefix Adder – Structure
	ILP on Prefix Adder – Structure
	ILP on Prefix Adder – Structure
	ILP on Prefix Adder – Structure
	ILP on Prefix Adder – Example
	ILP on Prefix Adder – Capacitance
	ILP on Prefix Adder – Capacitance
	ILP on Prefix Adder – Timing
	ILP on Prefix Adder – Timing
	ILP on Prefix Adder – Power
	ILP on Prefix Adder – Example
	ILP on Prefix Adder – Extension
	Experimental Results
	Experimental Results – 8-bit Uniform
	Experimental Results– 8-bit Uniform
	Experimental Results – 8-bit Uniform
	Experimental Results – 8-bit Non-Uniform
	Experimental Results – 64-bit Hierarchical
	Experimental Results – 64-bit Hierarchical
	Experimental Results – 64-bit Hierarchical
	Experimental Results – 64-bit Hierarchical
	Experimental Results – 64-bit Implementation
	Experimental Results – 64-bit Implementation
	Conclusions

