An Interconnect-Centric Approach to Cyclic Shifter Design

Haikun Zhu, Yi Zhu C.-K. Cheng

Harvey Mudd College.

David M. Harris
Harvey Mudd College.

Outline

- Motivation
- Previous Work
- Approaches
- Fanout-Splitting
- Cell order optimization by ILP
- Conclusions

Motivation

- Interconnect dominates gate in present process technology
- Delay, power, reliability, process variation, etc.

- Conventional datapath design focuses on logic depth minimization

Technology Trends

- Device (ITRS roadmap 2005, Table 40a)

Gate length (nm)	90	65	\% decreasing
Vdd (V)	1.1	1.1	-
Vth (V)	0.195	0.165	-
NMOS gate Cap (fF/ $\mu \mathrm{m}$)	0.573	0.469	18.2%
NMOS intrinsic delay (ps)	0.870	0.640	26.4%

- Updated Berkeley Predictive Interconnect Model

Gate length (nm)	90	65	\% decreasing
Inter-layer dielectric constant	2.8	2.6	-
Capacitance of local interconnect (fF/um)	0.186	0.173	7.0%

Shifter Taxonomy

- Functionality
- Logical Shift: MSBs stuffed with 0's
- Arithmetic Shift: Extend original MSB
- Cyclic Shift (rotation)
- Bidirectional Shift
- Circuit Topology
- Barrel Shifter
- Logarithmic Shifter

Barrel Shifter

- Pros
- Every data signal pass only one transmission gate
- Cons
- Input capacitance is $O(N)$
- \# transistors $=O\left(N^{2}\right)$
- Requires additional decoder for control signals

Logarithmic Shifter

Schematic

layout

- Pros
- \# transistors $=O\left(N \log _{2} N\right)$
- Cons
- Long inter-stage wires, especially for cyclic shifters Target of Optimization

Cyclic Shifter -- Applications

- Finite Field Arithmetic
- In normal basis, squaring is done by cyclic shifting.
- Encryption
- ShiftRows operation in Rijndael algorithm.
- DCT processing unit
- Address generator
- Bidirectional shifting
- Can be implemented as a cyclic shifter with additional masking logic
- CORDIC algorithm
- etc ...

Previous Work

- Bit interleave
- Two dimensional folding strategy
- Gate duplicating
- Ternary shifting
- Comparison between barrel shifter and log shifter

Cyclic Shifter - Traditional Design

- MUX-based

Timing

- Shifting \& non-shifting paths are intertwined together.
- Wire load on the critical path is $O\left(N \log _{2} N\right)$

Power

- When configured to pass through, the non-shifting paths have to be switched as well.

Fanout Splitting Shifter

- Use DEMUXes instead of MUXes

Example

Right rotate 5 bits

Red lines are signal lines
Green lines are quiet lines

Dynamic Power Consumption

- Dynamic Power $P_{\text {dynamic }}=\frac{C_{\text {eff }} V_{\text {Supply }}^{2}}{2}=\frac{\left(C_{\text {load }} P_{0 \rightarrow 1}\right) V_{\text {supply }}^{2}}{2}$
- Switching Probability $P_{X \mid 0->1}=P_{X=0}\left(1-P_{X=0}\right)$

$S P=$
$3 / 16$
3/ 16

$$
\mathrm{SP}=\text { Switching Probability }
$$

Gate Complexity

- Re-factoring design
- No extra complexity at gate level, both are $O\left(N \log _{2} N\right)$

DEMUX-based

Duality

- Duality provides flexibility for low level implementation
- NAND gates are good for static CMOS.
- NOR gates are good for dynamic circuits.

Cell Permutation

- Datapath usually assumes bit-slice structure
- The cell order of the input/output stages must be fixed
- However, the cells in the intermediate stages are free to permute.

Problem Statement

- Given
- A N-bit rotator
- Fixed linear order of the input/output stages
- Find
- An optimal permutation scheme of the intermediate stages such that the longest path is minimized (or, the total wire length s.t. delay constraint).

ILP Formulation

- Introduce a set of binary decision variables $x_{i j}^{l} \in\{0,1\}$
- $x_{i j}^{l}=1$ if and only if logic cell i is at physical location j on level l
- The solution space is fully defined by constraints

$$
\begin{aligned}
& \sum_{i=0}^{N-1} x_{i j}^{l}=1 \\
& (0 \leq j \leq N-1,1 \leq l \leq n-1) \\
& \sum_{j=0}^{N-1} x_{i j}^{l}=1 \quad(0 \leq i \leq N-1,1 \leq l \leq n-1)
\end{aligned}
$$

ILP Formulation (cont')

- Minimum delay formulation

$T_{\text {max }}=\max \{$ length of the delay path from

$$
\left.C_{i}^{0} \text { to } C_{j}^{n}, 0 \leq i, j \leq N-1\right\}
$$

Which can be expanded into
$T_{\text {max }} \geq$ length of the delay path from C_{i}^{0} to C_{j}^{n} for $0 \leq i, j \leq N-1$
objective

minimize $T_{\text {max }}$

- Minimum power formulation
minimize $T_{\text {total }}$
s.t. $T_{\text {max }}<$ const

ILP Formulation (cont')

- Represent the length of a single wire segment

$$
d=\left|\sum_{j=1}^{N-1} j \cdot x_{i_{1} j}^{0}-\sum_{j=2}^{N-1} j \cdot x_{i_{2} j}^{1}\right|
$$

- Formulating absolute operation

$$
\begin{aligned}
d=|D| & \Rightarrow d=\max \{D,-D\} \\
& \Rightarrow \begin{cases}d \geq D & \text { Psuedo-linear constraints discarded } \\
d \geq-D & \text { because we're trying to minimize } \\
d \leq D+I N F \cdot g \\
d \leq-D+I N F \cdot(1-g)\end{cases}
\end{aligned}
$$

Complexity

- Minimum total wire length formulation
- The case of one level of free cells is a minimum weight bipartite matching problem

Physical
location

- For the case of two or more levels of free cells, optimal polynomial algorithm is unknown
- Hardness of minimum delay formulation unestablished.

I LP Complexity

- The ILP formulation does not scale well
- Both \#integer variables and \#constraints are $O\left(N^{2}\right)$
- CPLEX uses on branch \& bound - exponential growth
- Sliding window scheme
- Only cells in the window are allowed to permute
- Consists of multiple passes; terminate when there is no improvement between passes

Power \& Delay Evaluation

- Overall Flow

Optimal solution for 8-bit case

7	6	5	4	3	2	1	0

7	6	5	4	3	2	1	0

7	6	5	4	3	2	1	0

6	5	4	3	7	2	1	0

7	6	5	4	3	2	1	0

3	4	2	6	7	5	1	0

7	6	5	4	3	2	1	0

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
\end{array}
$$

A global optimal solution

16-bit and 32-bit cases

16-bit, global optimal solution

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
$\gg 1$ bit																
13	14	12	9	11	10	8	15	7	6	5	3	4	1	2	0	0
$\gg 2$ bit																
11	12	7	10	9	15	14	6	13	5	8	3	4	2	1	0	0
$\gg 4$ bit																
7	6	5	15	14	3	12	13	11	10	9	8	4	2	0	1	1
$\gg 8$ bit																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	0

32-bit, suboptimal solution by sliding window method


```
                                    >> 1 bit
|30
        >> 2 bit
```



```
    >>4 bit
```



```
                        >8 bit
|15
    >> 16 bit
```


Analysis Results

Power-Delay Tradeoff

- Given $\mathrm{T}_{\text {max }}$ constraint, optimize $\mathrm{T}_{\text {total }}$

8-bit \& 16-bit are global optimum by cplex

32-bit \& 64-bit are suboptimal result by sliding window scheme

I mplementation Results

- Implementation methodology
- Standard cell based design using relative placement (by synopsys Physical Compiler)
- Routing and timing analysis in synopsys Astro
- Power estimation by synopsys PrimePower
- Control signals manually buffered following FO4 rule
- TSMC 90nm technology
- Three types of designs investigated
- Mux shifter using NAND2X2 gates
- Mux shifter using MX2X2 gates
- Demux shifter using NAND2X2 gates

Implementation Results - Cont'

- 64-bit results
- Most improvement comes from the interconnect

	Delay Components			muxsft64 A (NAND2X2)	$\begin{gathered} \text { muxsft64 }^{\text {B }} \\ \text { (MX2X2) } \end{gathered}$	$\begin{gathered} \hline \text { Demuxsft64 }{ }^{\text {c }} \\ \text { (NAND2X2) } \end{gathered}$	I mp. (C/A)
	Gate	Wire load	Xtalk				
Global critical path delay (ns)	\checkmark			0.7243	0.8731	0.7243	0\%
	\checkmark	\checkmark		1.5534	1.5534	1.1135	28\%
	\checkmark	\checkmark	\checkmark	1.9599	2.073	1.4503	26\%
Critical datain/ data-out path delay (ns)*	\checkmark			0.4839	0.6120	0.4717	2.5\%
	\checkmark	\checkmark		1.2520	1.1745	0.8473	32.3\%
	\checkmark	\checkmark	\checkmark	1.5986	1.5578	1.0882	31.9\%
Power (w) @ 500M	Cell Power			$5.165 \mathrm{e}-04$	7.707e-04	$5.129 \mathrm{e}-04$	0.7\%
	Net Power			$1.112 \mathrm{e}-03$	$9.907 \mathrm{e}-04$	$9.833 \mathrm{e}-04$	11.6\%
	Total			$1.629 \mathrm{e}-03$	$1.761 \mathrm{e}-03$	$1.496 \mathrm{e}-03$	8.2\%

[^0]
Outline

- Motivation
- Previous Work
- Approaches
- Fanout-Splitting
- Cell order optimization by I LP
- Conclusions and future work

Conclusions \& Future Work

- We have proposed
- Fanout-splitting design
- ILP based layout optimization
- Future directions
- Extend the fanout splitting idea and ILP formulation to ternary shifter
- Try alternative hierarchical approach to tackle the ILP complexity issue

The End

Thank you!

[^0]: * For mux shifters, this is $d[0]->z[0]$ while for demux shifter it is $d[0]->z[1]$

