An Interconnect-Centric Approach to Cyclic Shifter Design

Haikun Zhu, Yi Zhu C.-K. Cheng Harvey Mudd College. David M. Harris Harvey Mudd College.

Outline

- Motivation
- Previous Work
- Approaches
 - Fanout-Splitting
 - Cell order optimization by ILP
- Conclusions

Motivation

- Interconnect dominates gate in present process technology
 - Delay, power, reliability, process variation, etc.

Source: ITRS roadmap 2005

 Conventional datapath design focuses on logic depth minimization

Technology Trends

• Device (ITRS roadmap 2005, Table 40a)

Gate length (nm)	90	65	% decreasing
Vdd (V)	1.1	1.1	-
Vth (V)	0.195	0.165	-
NMOS gate Cap (fF/µm)	0.573	0.469	18.2%
NMOS intrinsic delay (ps)	0.870	0.640	26.4%

• Updated Berkeley Predictive Interconnect Model

Gate length (nm)	90	65	% decreasing
Inter-layer dielectric constant	2.8	2.6	-
Capacitance of local interconnect (fF/um)	0.186	0.173	7.0%

Shifter Taxonomy

- Functionality
 - Logical Shift: MSBs stuffed with 0's
 - Arithmetic Shift: Extend original MSB
 - Cyclic Shift (rotation)
 - Bidirectional Shift
- Circuit Topology
 - Barrel Shifter
 - Logarithmic Shifter

Barrel Shifter

- Pros
 - Every data signal pass only one transmission gate
- Cons
 - Input capacitance is O(N)
 - # transistors = $O(N^2)$
 - Requires additional decoder for control signals

Logarithmic Shifter

Schematic

layout

- Pros
 - # transistors = $O(N \log_2 N)$
- Cons
 - Long inter-stage wires, especially for cyclic shifter Target of Optimization

Cyclic Shifter -- Applications

- Finite Field Arithmetic
 - In normal basis, squaring is done by cyclic shifting.
- Encryption
 - ShiftRows operation in Rijndael algorithm.
- DCT processing unit
 - Address generator
- Bidirectional shifting
 - Can be implemented as a cyclic shifter with additional masking logic
- CORDIC algorithm
- etc ...

Previous Work

- Bit interleave
- Two dimensional folding strategy
- Gate duplicating
- Ternary shifting
- Comparison between barrel shifter and log shifter

Cyclic Shifter – Traditional Design

Fanout Splitting Shifter

Use DEMUXes instead of MUXes

Example

Right rotate 5 bits

Red lines are signal lines Green lines are quiet lines

Dynamic Power Consumption

- Dynamic Power $P_{\text{dynamic}} = \frac{C_{\text{eff}}V_{\text{supply}}^2}{2} = \frac{(C_{\text{load}}P_{0\to 1})V_{\text{supply}}^2}{2}$
- Switching Probability $P_{X|0->1} = P_{X=0}(1 P_{X=0})$

SP = Switching Probability

Gate Complexity

- Re-factoring design
 - No extra complexity at gate level, both are O(N log₂ N)

Duality

- Duality provides flexibility for low level implementation
 - NAND gates are good for static CMOS.
 - NOR gates are good for dynamic circuits.

Cell Permutation

- Datapath usually assumes bit-slice structure
 - The cell order of the input/output stages must be fixed
 - However, the cells in the intermediate stages are free to permute.

Problem Statement

- Given
 - A N-bit rotator
 - Fixed linear order of the input/output stages
- Find
 - An optimal permutation scheme of the intermediate stages such that the longest path is minimized (or, the total wire length s.t. delay constraint).

ILP Formulation

- Introduce a set of binary decision variables $x_{ij}^l \in \{0, 1\}$
 - $x_{ij}^l = 1$ if and only if logic cell *i* is at physical location *j* on level *l*
- The solution space is fully defined by constraints

$$\sum_{i=0}^{N-1} x_{ij}^l = 1 \quad (0 \le j \le N-1, 1 \le l \le n-1)$$
$$\sum_{j=0}^{N-1} x_{ij}^l = 1 \quad (0 \le i \le N-1, 1 \le l \le n-1)$$

ILP Formulation (cont')

Minimum delay formulation

 $T_{\max} = \max\{ \text{length of the delay path from} \\ C_i^0 \text{ to } C_j^n, \ 0 \leq i,j \leq N-1 \}$

Which can be expanded into

 $T_{\max} \ge \text{length of the delay path from } C_i^0 \text{ to } C_j^n$ for $0 \le i, j \le N-1$

objective

minimize T_{max}

• Minimum power formulation

minimize T_{total} s.t. $T_{max} < const$

ILP Formulation (cont')

Represent the length of a single wire segment

$$d = \Big|\sum_{j=1}^{N-1} j \cdot x_{i_1 j}^0 - \sum_{j=2}^{N-1} j \cdot x_{i_2 j}^1\Big|$$

Formulating absolute operation

$$d = |D| \quad \Rightarrow d = \max\{D, -D\}$$

$$\Rightarrow \begin{cases} d \ge D \\ d \ge -D \\ d \le D + \mathsf{INF} \cdot g \\ d \le -D + \mathsf{INF} \cdot (1) \end{cases}$$

Psuedo-linear constraints discarded because we're trying to minimize

Ŷ)

Complexity

- Minimum total wire length formulation
 - The case of one level of free cells is a minimum weight bipartite matching problem

- For the case of two or more levels of free cells, optimal polynomial algorithm is unknown
- Hardness of minimum delay formulation unestablished.

ILP Complexity

- The ILP formulation does not scale well
 - Both #integer variables and #constraints are $O(N^2)$
 - CPLEX uses on branch & bound exponential growth
- Sliding window scheme
 - Only cells in the window are allowed to permute
 - Consists of multiple passes; terminate when there is no improvement between passes

Power & Delay Evaluation

• Overall Flow

Optimal solution for 8-bit case

A global optimal solution

16-bit and 32-bit cases

16-bit, global optimal solution

32-bit, suboptimal solution by sliding window method

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	>> 1 bit																														
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	31	14	13	12	11	10	9	8	6	7	5	4	3	2	1	0
	>> 2 bit																														
28	27	26	25	24	23	22	21	20	19	18	17	16	31	15	14	30	13	12	29	11	10	9	8	7	5	6	4	3	0	1	2
	>> 4 bit																														
24	23	22	21	20	19	18	17	16	15	14	31	13	12	30	29	28	27	26	11	10	25	8	9	7	6	5	2	3	4	0	1
														>	>> {	3 bi	t														
15	14	13	12	16	11	10	31	9	8	30	29	28	27	26	25	24	23	22	21	20	19	18	7	6	17	5	2	4	3	1	0
	>> 16 bit																														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Analysis Results

Power-Delay Tradeoff

Implementation Results

- Implementation methodology
 - Standard cell based design using relative placement (by synopsys Physical Compiler)
 - Routing and timing analysis in synopsys Astro
 - Power estimation by synopsys PrimePower
 - Control signals manually buffered following FO4 rule
 - TSMC 90nm technology
 - Three types of designs investigated
 - Mux shifter using NAND2X2 gates
 - Mux shifter using MX2X2 gates
 - Demux shifter using NAND2X2 gates

Implementation Results – Cont'

- 64-bit results
 - Most improvement comes from the interconnect

	De	lay Compone	nts	muxsft64 ^A	muxsft64 ^B	Demuxsft64 ^C	Imp.	
	Gate Wire load Xtalk		(NAND2X2)	(MX2X2)	(NAND2X2)	(<mark>C/A</mark>)		
Global critical path	\checkmark			0.7243	0.8731	0.7243	0%	
delay (ns)	\checkmark	\checkmark		1.5534	1.5534	1.1135	28%	
	\checkmark	√ √		1.9599	2.073	1.4503	26%	
Critical data-	\checkmark			0.4839	0.6120	0.4717	2.5%	
in/data-out path delay (ns)*	\checkmark	\checkmark		1.2520	1.1745	0.8473	32.3%	
	\checkmark	\checkmark	\checkmark	1.5986	1.5578	1.0882	31.9%	
Power (w) @ 500M		Cell Power		5.165e-04	7.707e-04	5.129e-04	0.7%	
		Net Power		1.112e-03	9.907e-04	9.833e-04	11.6%	
	Total			1.629e-03	1.761e-03	1.496e-03	8.2%	

* For mux shifters, this is $d[0] \rightarrow z[0]$ while for demux shifter it is $d[0] \rightarrow z[1]$

Outline

- Motivation
- Previous Work
- Approaches
 - Fanout-Splitting
 - Cell order optimization by ILP
- Conclusions and future work

Conclusions & Future Work

- We have proposed
 - Fanout-splitting design
 - ILP based layout optimization
- Future directions
 - Extend the fanout splitting idea and ILP formulation to ternary shifter
 - Try alternative hierarchical approach to tackle the ILP complexity issue

The End

Thank you!

