Plenary Talk

Overview on Low Power SoC Design Technology

Kimiyoshi Usami

Dept. of Information Science and Engineering Shibaura Institute of Technology Tokyo, Japan

Outline

1. Background

Trend on power dissipation in SoC

- 2. Conventional design techniques to reduce leakage
- 3. Techniques to reduce Active Leakage
- 4. Summary

Trend on Power Dissipation

- Dynamic power increases as device gets scaled
- Leakage power increases exponentially becomes equal to dynamic power at 20nm @RT; at 50nm @100C

3

Design techniques to reduce subthreshold leakage

Power Gating

- Technique to turn off supply voltage using Power Switch (PS) to reduce leakage power
- Originally, used to reduce standby leakage

Approaches to reduce Active Leakage

- Power Gating to turn off PS even in operation time
 "Run-time Power Gating "
- Run-time Power Gating approaches
 - Module-level approach
 - Fine-grained approach

Module-level Run-time Power Gating

- Renesas Technology's mobile processor
- Partitioned into 20 Power Domains based on module
- Power Switch for each Power Domain controlled at run time corresponding to "scenes"

Courtesy: T. Hattori, et al, ISSCC2006, DAC'06

Module-level Run-time Power Gating (cont.)

Scene : Video telephony

Leakage: 849µA (RT, 1.2V)

Scene : Waiting for calling

Leakage: 299 μ A (RT, 1.2V)

Courtesy: T. Hattori, et al, ISSCC2006, DAC'06

Fine-grained Run-time Power Gating

• Typical structure for gated clock design

 When enable = 0, stored data in F/F is not updated output of combinational logic is logically "don't care"

• Exploiting enable signal of gated clock

K. Usami, et al, ICCD2006

 Partitioning logic gates into power-domains based on enable signals

K. Usami, et al, ICCD2006

- Logic gate and Power Switch are defined as "cell"
- V-GND line is routed as inter-cell wire

- Applied to datapath in embedded microprocessor
- Datapath was partitioned into 66 Power domains based on enable signals

Power Switch cells highlighted in purple

Total: 17085 cells incl. 1866 PS cells

- Active leakage power reduced by 83% at 90nm
- Area penalty by 20%

K. Usami, et al, ICCD2006

Summary

- Power dissipation in SoC gets more serious as device is scaled
- Share of leakage in the total operation power increases in further scaled devices
- Run-time Power Gating will become important to reduce active leakage power

Thank you !