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Leakage Current

e | eakage current in nanometer regime

— Exponential growth of leakage

= Subthreshold leakage due to reduced V,, @
= Gate leakage due to reduced T, @)
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Leakage Current

o Gale leakage current
— Grow faster than subthreshold leakage
— May dictate the total leakage in future technology
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Power Gating

= Power gating
— Widely used to suppress subthreshold leakage
— Active mode: footer turned-on
— Standby mode: footer cuts off power rail
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Power Gating

= Power gating in nanometer regime

— State-retention and output-holding circuit leak gate
leakage

— | eakage saving from power gating greatly reduced
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Supply Switching with Ground Collapse

o SSGC: supply control + power gating
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Supply Switching with Ground Collapse

« SSGC circuit

— Reduce leakage of combinational logic through power
gating (ground collapse)

— Reduce leakage of FF through lowered voltage
(supply switching) and power gating

— No need to use state-retention FF
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Supply Switching with Ground Collapse

e |mplementation of SSGC
— Design of supply switching circuits
— Physical design
= Power networks

= SSGC flip-flop
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Supply Switching Circuits

e M1 switch
— Supplying active V4 = T Vg
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Supply Switching Circuits

* V4 IN standby
— Bounded by the potential to retain states in FFs + noise

margin
— Factors: temperature, process variation, states (O or 1), FF
types
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Supply Switching Circuits

« Design of M2 switch

— Selection of M2 size and V., for
» Efficient leakage saving
» Lowest V4, (€.9. 260mYV)

— Voltage drop across M2 dictates V.,
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Supply Switching Circuits

Design of M2 switch
— M2 size vs. V,
» Trade-off between area overhead and leakage power
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Physical Design of SSGC

= Power networks for SSGC
— Conventional V4 and V., rails as V44, and V., rails
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Physical Design of SSGC

o SSGC flip-flop

— State maintained in slave latch with low V.,
= No nheed of state-retention element

= | ow gate and subthreshold leakage current

— Other parts are power gated for further reduction
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Physical Design of SSGC

e Footer layout

— Isolated body (body bias to V..) preferred for leakage
current - area overhead due to well isolation

— Building block-based approach: flexible placement,
control of area overhead
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Physical Design of SSGC

= Qutput-holding circuit

— Output-holding circuits are needed due to V (<V ) IN
standby

— Utilize high V,, to reduce subthreshold leakage
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SSGC Design Flow

Gate-level netlist
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Experimental Results

e Test circults
— |SCAS and ITC benchmark circuits
— 65- and 45-nm predictive models
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Case Study: ETM

e Embedded Trace Macrocell (ETM)

— Debugging and tracing core for ARM
— 90nm,, 1.0V commercial precess
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Case Study: ETM

o SSGC implementation result
— Total leakage saving: 32x at 25°C
— Area increase: 3%
— Wirelength increase: 6%
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sSummary

= Power gating
— Widely used to suppress subthreshold leakage

— NOT efficient in nanometer technology due to gate
leakage of storage elements and output-holding
circuits

= Supply switching with ground collapse
— Overcomes the limitation of power gating

— Demonstrates cell-based semicustom design flow
based on SSGC
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