Simultaneous Control of Subthreshold and Gate Leakage Current in Nanometer-Scale CMOS Circuits

Youngsoo Shin¹, Sewan Heo¹, Hyung-Ock Kim¹, Jung Yun Choi²

¹Dept. of Electrical Engineering, KAIST, KOREA ²Samsung Electronics, KOREA

Outline

- Introduction: leakage current, power gating
- Supply switching with ground collapse (SSGC)
- Implementation of SSGC
- Experimental results
- Summary

Leakage Current

- Leakage current in nanometer regime
 - Exponential growth of leakage
 - Subthreshold leakage due to reduced V_{th} 1
 - Gate leakage due to reduced T_{ox} 2

http://www.intel.com/technology/itj/2005/volume09issue04/art01_advpackagetech/p04_techtrends.htm

Leakage Current

- Gate leakage current
 - Grow faster than subthreshold leakage
 - May dictate the total leakage in future technology

Power Gating

- Power gating
 - Widely used to suppress subthreshold leakage
 - Active mode: footer turned-on
 - Standby mode: footer cuts off power rail

Power Gating

- Power gating in nanometer regime
 - State-retention and output-holding circuit leak gate leakage
 - Leakage saving from power gating greatly reduced

Supply Switching with Ground Collapse

SSGC: supply control + power gating

Active

Supply switching

circuits: V_{dd}

Footer: on

Standby

Supply switching

circuits: V_{sv} (<V_{dd})

Footer: off

Supply Switching with Ground Collapse

SSGC circuit

- Reduce leakage of combinational logic through power gating (ground collapse)
- Reduce leakage of FF through lowered voltage (supply switching) and power gating
- No need to use state-retention FF

Supply Switching with Ground Collapse

- Implementation of SSGC
 - Design of supply switching circuits
 - Physical design
 - Power networks
 - SSGC flip-flop
 - Footer
 - Output-holding circuit

- V_{ddv} in standby
 - Bounded by the potential to retain states in FFs + noise margin
 - Factors: temperature, process variation, states (0 or 1), FF types

260mV for state retention

- Design of M2 switch
 - Selection of M2 size and V_{sv} for
 - Efficient leakage saving
 - Lowest V_{ddv} (e.g. 260mV)
 - Voltage drop across M2 dictates V_{sv}

M2 size and V_{sv} $V_{sv} = V_{ddv} + I_{leakage} \times R_{M2}$ $R_{M2} = \frac{R_{min}}{M2 \ size}$ $R_{M2} = \frac{R_{min}}{M2 \ size}$

- Design of M2 switch
 - M2 size vs. V_{sv}
 - Trade-off between area overhead and leakage power

$$V_{sv} = V_{ddv} + I_{leakage} \times \frac{R_{min}}{M2 \ size}$$

- Power networks for SSGC
 - Conventional V_{dd} and V_{ss} rails as V_{ddv} and V_{ssv} rails

V_{dd}: vertical rails

V_{ss}: horizontal rails

 V_{SS}

V_{ddv} and V_{ssv} rails for combinational logic cells

- SSGC flip-flop
 - State maintained in slave latch with low V_{sv}
 - No need of state-retention element
 - Low gate and subthreshold leakage current
 - Other parts are power gated for further reduction

- Footer layout
 - Isolated body (body bias to V_{ss}) preferred for leakage current → area overhead due to well isolation
 - Building block-based approach: flexible placement, control of area overhead

- Output-holding circuit
 - Output-holding circuits are needed due to V_{sv}(<V_{dd}) in standby
 - Utilize high V_{th} to reduce subthreshold leakage

SSGC Design Flow

Experimental Results

- Test circuits
 - ISCAS and ITC benchmark circuits
 - 65- and 45-nm predictive models

Case Study: ETM

- Embedded Trace Macrocell (ETM)
 - Debugging and tracing core for ARM
 - 90nm, 1.0V commercial process

I / Os	SEs	Gates	Leakage
320 / 124	5,501	90,068	410uA

- Footer, M1, and M2 sizing
 - M1 and footer sizing for 10% delay increase
 - M2 sizing to optimize leakage at room temperature

Case Study: ETM

- SSGC implementation result
 - Total leakage saving: 32x at 25°C
 - Area increase: 3%
 - Wirelength increase: 6%

Leakage current breakdown

Summary

- Power gating
 - Widely used to suppress subthreshold leakage
 - NOT efficient in nanometer technology due to gate leakage of storage elements and output-holding circuits
- Supply switching with ground collapse
 - Overcomes the limitation of power gating
 - Demonstrates cell-based semicustom design flow based on SSGC