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• As the CMOS process 
shrinks, VDD is scaled down 
to reduce dynamic power,

• Vth is also scaled down to 
improve the CMOS  device 
switching speed,

• But with low Vth, sub-
threshold leakage power 
increases exponentially.

Leakage Power in FPGAs

Present

0.10.01 1
0

5

10

Channel Length (μm)
Po

w
er

 T
re

nd
To satisfy the power 
requirements of a wireless 
mobile application: 
only 20 CLBs can be usedTypical PLEAK

(avg input data)
Best-case 
input data

Worst-case 
input data

18.9μW/CLB -31.1% +26.8%

4X increase in 
leakage from 130nm

Increase in 
input dependency

Tuan et al., “Leakage Power Analysis of a 90nm FPGA,” CICC 2003.
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The Status in Modern FPGAs
• Implemented in 65nm CMOS process.
• Average utilization per configuration in 60-70%.
• The unutilized parts represent a leakage power 

overhead without producing useful output:
– For a utilization of 50%, 56% of the leakage power is 

consumed in the unutilized parts.
• Even the utilized parts consume active leakage in 

their active mode, and large standby leakage 
power during their idle period.
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Supply Gating Architecture
• A high Vth sleep transistor (ST) to 

cut off the leakage path,
• The ST will turn OFF the idle logic 

blocks static leakage,
• The ST reduces leakage 

significantly due to the stacking 
effect dynamic leakage,

• Leakage reduction is traded to 
performance degradation.

Performance 
penalty around 5% 
all over the chip.

Can the performance 
penalty be modulated 
according to criticalities?
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Targeted FPGA Architecture
• Every n BLEs are 

grouped together in 
one sleep region,

• Every sleep region is 
served by one ST,

• DFF are not supply 
gated and used for 
data retention during 
the sleep mode.
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T-VPackT-MTCMOS

• Conventional CAD flows for 
FPGAs do not target leakage 
power reduction,

• Identifying logic blocks that 
can be turned OFF 
simultaneously, activity profile 
generation,

• T-MTCMOS; a timing-activity 
modification of the T-VPack
algorithm.

CAD Flow
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Sizing the Sleep Transistor
• Performance Degradation:

– The maximum discharge current 
flowing through the ST is limited by 
its size,

– The total discharge current in any 
sleep region must be less than that 
of the ST,

– Usually the performance penalty is 
limited to 5%,

– Discharge current patterns depend 
on the connections of logic blocks.
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LAP: Logic Activity Profiles

• The activity of each BLE is 
represented as a binary sequence 
(activity vector),

• The relation between the activities is 
calculated based on the Hamming 
distance between activity vectors,

• Activity vectors are generated based 
on the logic function of the blocks.
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LAP: Logic Activity Profiles
• Activity vector

– Given a net x in a circuit 
netlist, the activity vector 
Ax of x is

– n is the total number of 
inputs to the circuit

– ai is a binary number and 
equal to ‘1’ if at input 
vector I, x is needed to 
evaluate any of the 
outputs

– For example:
( )0 1 0 1 0 1 0 1 T

DA =

( )11 2 3 2 2
.... n n

T

xA a a a a a−=
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LAP: Logic Activity Profiles
• Hamming distance

–The Hamming distance 
between any 2 binary vectors:

–The difference between the 
activity vectors can be  
represented as the Hamming 
distance between them,

–Hence, if D and I are grouped 
in the same cluster, the ST 
will be off for 25% of the time.
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AT-VPack: Activity Packing
• Based on the T-VPack algorithm,
• For each cluster, a seed BLE is selected with the 

highest criticality,
• In T-VPack, BLEs are added based on:

– Cluster size does not exceed cluster capacity,
– Number of inputs does not exceed cluster inputs.

• Added constraint:
– Cluster discharge current does not exceed maximum 

discharge current.
• Objective function of adding block B to cluster C:

( ) ( ) ( ) ( ) ( )1 ,
,

2
1

2n

nCriticality B SharingGain B C
d B C

α λ λ α⎡ ⎤− + − +⎣ ⎦
−
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T-MTCMOS: Timing Driven Packing
• The discharge current constraint is relaxed for 

non-critical paths,

• This will result in packing more blocks with closer 
activity profiles, thus more leakage savings,

• It should be noted that no new critical paths get 
created.
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Results and Discussions
Circuit % of Unused Clusters % Leakage Savings w/o T-MTCMOS % Leakage Savings T-MTCMOS 

alu4 4.5 22.9 50.13 

apex2 2.48 20.7 46.87 

apex4 2.16 19.1 41.96 

bigkey 2.72 20.2 42.87 

clma 0.76 18.9 40.02 

des 0.25 16.8 39.67 

diffeq 6 22 51.34 

dsip 4.7 21.2 44.05 

elliptic 5.9 21.6 49.56 

ex1010 0.26 18.7 47.31 

ex5p 6.92 22.8 55.69 

frisc 1.56 18.2 41.88 

misex3 2.21 20.9 43.29 

pdc 0.78 17.7 33.43 

s298 8.32 28.3 64.57 

s38417 5.6 25.4 34.39 

s38584.1 1.56 18.9 39.96 

seq 0 14.2 23.64 

spla 3.6 18.3 39.43 

seq 0                          14.2              23.64

No unused CLBs
Savings from the dynamic switching 
ON and OFF of the used CLBs

s298 8.32 28.3                          64.57

Max unused CLBs
Max power savings

Almost 2X increase 
in leakage savings

130nm CMOS process, delay penalty 5% or 3-8%
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Results and Discussions
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Results and Discussions
• Leakage Savings vs. critical paths sleep penalty:

Maximum savings at a 
sleep region of size 8
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Results and Discussion
• Paths delay distribution:
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Conclusions
• Modulating the speed penalty due to sleep 

transistors in FPGAs results in a 2X
increase in leakage savings,

• Leakage savings saturate with increasing 
the delay penalty along non-critical paths,

• A sleep region of size 8 results in the 
optimum leakage savings.
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