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Impact of Buffers

Buffer insertionBuffer insertion is an essential technique for 
interconnect optimization.
At 65nm process technology, 35% of the cells 
on a chip will be buffers. [1]

One must be able to assess the impact of 
buffer insertion in earlier stages, such as 
floorplanning.
– e.g., fast estimate the timing cost for a net

[1]  P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater scaling 
and its impact on CAD,” IEEE Trans. on Computer-Aided Design of 
Integrated Circuits and Systems, vol. 23, no. 4, pp. 451-463, Apr. 2004.
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Impact of Buffers 2

A linear-time algorithm [2] was proposed to 
predict interconnect delay with optimal 
buffering.
–– NotNot actually perform buffer insertion
– Consider the effect of buffer blockages
– Based on a set of assumptions
– Within 5% average error
– 100x faster than van Ginneken’s algorithm

[2]   C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze, “Accurate estimation of 
global buffer delay within a floorplan,” IEEE Trans. on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1140-1146, Jun. 
2006. 
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Effect of Process Variations

Technology beyond 90nm exhibits significant 
variations. [3]

Traditional analysis and optimization methods 
under nominal circuit parameters (μ) 
become too riskyrisky.
Traditional analysis and optimization methods 
in the worst case corner (i.e., μ+3σ) 
become too pessimisticpessimistic.
[3]   C. Visweswariah, “Death, taxes and failing chips,” in Proc. Design 

Automation Conf., pp. 343-347, 2003. 

Cu Cu Cu
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Effect of Process Variations 2

The delay estimated by a deterministic 
buffered delay estimation (DBDE) method in 
worst case corner (in red linered line) exceeds theexceeds the
actual worst case corneractual worst case corner (in blue lineblue line)

– force a designer 
to rollback 
design

– but there is 99% 
probability to 
satisfy the given 
constraint

–– overover--pessimisticpessimistic!!

Actual 
Worst
Case

Corner

Predicted 
Worst
Case

Corner

Delay Dist.
Statistical Est.
Deterministic Est.
99%
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Effect of Process Variations 3

In recent technology generations, variability 
was dominated by the Back-End-of-the-Line 
(BEOL) or interconnect metallization [3]

– The number of cases or corners grows 
tremendously.

– Traditional corner-based optimization are not 
applicable nowadays.

[3]   C. Visweswariah, “Death, taxes and failing chips,” in Proc. Design 
Automation Conf., pp. 343-347, 2003. 
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Problem Formulation

Input
– A routed topology of a net
– A set of buffer blockages
– A buffer library
– Circuit parameters with variations

Output
– Fast statistical timing estimation on worst path 

delay among all paths from the driver to receivers

Cw(u,sigma)
Rw(u,sigma)
Cb(u,sigma)
Rb(u,sigma)
Db(u,sigma)

u

sigma
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Delay Model

Delay model for buffer
– input capacitance Cb
– output resistance Rb
– intrinsic delay Db

π-model for interconnect
– wire capacitance per unit length Cw
– wire resistance per unit length Rw

Elmore delay model for delay computation
– Is a linearlinear function of wire length while optimal 

buffering
– Is quadraticquadratic to wire length without buffer insertion

Db

L
L L
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DBDE [1]

Four assumptions are applied to simplify and 
accelerate the estimation.
– Single buffer type
– Infinitesimal decoupling buffers
– Small buffer blockages ignored (e.g., b1 and b2)
– Larger buffer blockage front-and-back buffering 

(e.g., b3)
[2]   C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze, “Accurate estimation of 

global buffer delay within a floorplan,” IEEE Trans. on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1140-1146, Jun. 
2006. 

s0 s1

s2

b1 b2

b3

s0 s1

s2b3

a) Without assumptions b) With assumptions
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b1 b2

DBDE 2

Delay is accumulated in a single bottom-up 
tree traversal by decomposing edges as outout--
blockage edgesblockage edges and inin--blockage edgesblockage edges.
When reaching the merge point, DBDE picks 
the largest accumulated delay and 
propagates it.

s0

b3

s1

s2

s3
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b1 b2

DBDE 3

Delay calculation:
– ignore small blockages :  

– the delay of out-blockage edge is linear

– the delay of in-blockage edge is quadratic

s0

b3

s1

s2

( )( ) ( 2 )e w b b w w w b b bD e L R C R C R C R C D= + + +

( )2 b b b
opt

w w

R C D
L L

R C
+

< =

s3

( )1( )
2w e b e b b b e bD e R L C L C R C L C⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
How to extend 
these formulas 
with variations ?
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SBDE – Process Variation Modeling

We represent all random variables in a first-
order canonical form :

– k : number of variation sources 
– Xi: the ith variation source (e.g., inter-/intra-die 

variation)
– ai: sensitivity with respect to Xi

Circuit parameters with variations are 
represented in the canonical form:

We assume all Xi are in the standard Gaussian 
distribution ~N(0,1) and mutually independent.

0 0
1

T
i i

k
A A a X A X

i
α= + = +∑

=

0
T

w w wR R Xγ= + 0
T

w w wC C Xε= +

0
T

b b bR R Xγ= + 0
T

b b bC C Xε= + 0
T

b b bD D Xη= +
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SBDE – Key Operations

Associate each node v with (d(v), c(v))
– Accumulated worst delay : d(vd(v))
– Downstream loading capacitance : c(vc(v))

Represent the d(u) and c(u) of the child node 
u of node v in the firstfirst--order canonical formsorder canonical forms:
–

Derive d(v) and c(v) from node u by edge e: 
– If e is an out-blockage edge

– If e is an in-blockage edge

( ) 0
T

u ud u d Xα= +

( ) 0
T

u uc u c Xβ= +

( )( ) ( ) ( 2 )e w b b w w w b b bd v d u L R C R C R C R C D= + + + +

( )( ) ( ) / 2 ( )w e w ed v d u R L C L c u= + +
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SBDE – Key Operations 2

Quadratic delay calculation
– ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

2
0 0 0 0 0

2
0 0 0 0

2

0

1 , ,
2

1 , ,
2

1 , ,
2

u w w w u

T

u w w w w w u u w

T TT
w w w u

T T

d v d l u v R C l u v R c

l u v R C l u v R c X

X l u v l u v X

d X X X

α ε γ β γ

γ ε γ β

λ

= + +

⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ +⎢ ⎥⎣ ⎦

= + + Ω
Not in the first-order 

canonical form

– a) calculate the first and the second moments of d(v)
( )( ) ( ) ( ) ( )0 0

T TE d v d E X E X X d trλ= + ⋅ + Ω = + Ω

( )( ) ( ) ( )( ) ( )

( ) ( )
( )( ) ( )

22 2
0 0

0

22 2
0

2

2 2

2

T T T T

T T T

T

E d v d E X X E X X d E X

E X X X d E X X

d tr tr

λλ λ

λ

λ λ

= + + Ω +

+ Ω + Ω

= + Ω + + Ω
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SBDE – Key Operations 3

– b) calculate the mean and variance by the first and 
the second moments

– c) approximate d(v) to the first-order canonical 
form by matching the mean and variance

( )( ) ( ) ( ) ( )0 0
T TE d v d E X E X X d trλ= + ⋅ + Ω = + Ω

( )( ) ( ) ( )( ) ( )

( ) ( )
( )( ) ( )

22 2
0 0

0

22 2
0

2

2 2

2

T T T T

T T T

T

E d v d E X X E X X d E X

E X X X d E X X

d tr tr

λλ λ

λ

λ λ

= + + Ω +

+ Ω + Ω

= + Ω + + Ω

( ) ( )( ) ( )2

0

2
1 T

T

tr
d v d tr Xλ

λ λ

Ω
≈ + Ω + +

( )( ) ( )( ) ( )0d v E d v d trμ = = + Ω

( )( ) ( )( ) ( )( ) ( )2 22 22Td v E d v E d v trσ λ λ= − = + Ω
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SBDE – Key Operations 4

Linear delay calculation
– ( ) ( )( )

( ) ( )
0 0 0 0 0 0 0 0 0( )

T
u e w b b w u e w b w b b w b w

T TT
e w b b w e

d v d L R C R C L R C R C X

X L X L f X

α ε γ ε γ

γ ε γ ε

= + + + + + + +

+ + +

( )
( )

2 3 4

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0
0 0 0 0

where  

           2

           2 0

          2

w w b b b

w w b b w w b
w w b b w w

w w b b w w b

w w w b w
w w b b

w w w b

f X A BX CX DX EX

A R C R C D

B R C R C R C DbR C R C R C D

R C R C
R C R R

C

γ ε γ ε γ ε η

γ ε γ γ γ ε

= + + + +

= +

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

+ +

= 0 0 0 0 0 0 0 0

0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0          2

b w b w b b b

w b w b w b b b

w w w b w b
w w b

w w w b w b

w w b w w b w b b w b b
w w b b

w w b w w b w b b w b b

R C C R C C R C

R C D
R C R D C D

R C R C
D R C R R C C R R C C R C

ε γ ε ε γ ε

γ ε γ η ε η

γ ε γ γ ε ε γ γ ε ε γ ε

⎡ ⎤⎛ ⎞
+ + +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
+ + +⎜= ⎝

          2
w w b

w w b bE
γ ε η

γ ε γ ε

⎡ ⎤
⎢ ⎥⎟

⎠⎢ ⎥
⎢ ⎥+⎣ ⎦

=

Not in the first-order canonical form

Square-root ?!
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– b) then use the same matching technique to 
approximate d(v) to the first-order canonical form.

SBDE – Key Operations 5

– a) apply the Taylor series expansion on f(x) with 
respect to X=0 and truncate it until the second 
order

( )
2

32 2 8

T
TB C Bf X A X X X

A A A

⎛ ⎞⎛ ⎞≈ + + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 0 0 0 0

0 0 0 0

2

3

2

2 8

v w b b w

w b w b b w b w

T T
w b b w

d R C R C A
BR C R C

A
C B

A A

λ ε γ ε γ

γ ε γ ε

= + +

= + + + +

Ω = + + −

( ) ( )( ) ( )2

0

2
1 T

T

tr
d v d tr Xλ

λ λ

Ω
≈ + Ω + +
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SBDE – Key Operations 6

Maximum delay determination
– given two random variables in first-order canonical form

– first calculate the tightness probability TA,B (the probability of 
A larger than B) and  TB,A according to [4]

– then compute the mean and variance via the moment 
generating function provided in [5]

0
T

AA A Xσ= +

0
T

BB B Xσ= +

0 0 0 0
, , ,

2 2

,  1

where 2

A B B A A B

A B A B

A B B AT T T
θ θ

θ σ σ ρσ σ

− −⎛ ⎞ ⎛ ⎞= Φ = Φ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + −

( ) ( )0 0
, 0 , 0 , ,max ,

T
A B B A A B A B A B

A BA B T A T B T T Xθ φ σ σ
θ
−⎛ ⎞= + + + +⎜ ⎟

⎝ ⎠
[4]  C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan, “Frist-order incremental 

block-based statistical timing analysis,” in Proc. Design Automation Conf., pp. 331-336, 2004.
[5]  M. Cain, “The moment-generating function of the minimum of bivariate normal random variables,”

in The American Statistician, vol. 48, May 1994.



23

Outline

Introduction
Preliminaries
Methodology
Experimental Results
Conclusion



24

Experimental Results

We implemented the following three algorithms in C++ 
on Linux x86_64 machine with 2G Processor/4GB 
RAM.
– Deterministic Buffered Delay Estimation (DBDE) [1]

– Statistical Buffered Delay Estimation (SBDE)
– Statistical Buffer Insertion (SBI) [6]

We used the largest buffer in our estimation and 
forced the parameters of drivers and receivers to be 
equal to the parameters of the buffer we chose.

[1]   C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze, “Accurate estimation of 
global buffer delay within a floorplan,” IEEE Trans. on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1140-1146, 
Jun. 2006. 

[6] J. Xiung, and L. He, “Fast buffer insertion considering process variations,” in 
Proc. Intl. Symp. on Physical Design, pp. 128-135, 2006.
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Experimental Results 2

For each circuit parameters, the sensitivity ai
to each variation source Xi is set to 5% of its 
nominal value A0.
– e.g.,

40mm

1mm

4mm

0 0

0

1
where  0.05

T
i i

i

k
A A X A a X

i
a A

α= + = + ∑
=

=

A same blockage 
configuration was 
applied on each test 
case.
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DBDE SBDE SBI SBDE vs. SBI

net delay runtime delay sd runtime delay sd #buf runtime delay sd runtime

r3

r4

r5

r6

r7

r8

r9

r10

1550.75 0.0009 1560.02 246.43 0.0024 1605.33 255.05 12 0.3644 97.18% 96.62% 149x

1771.43 0.0013 1782.11 282.17 0.0039 1837.98 292.77 16 0.4037 96.96% 96.38% 104x

1497.81 0.0013 1507.15 241.56 0.0039 1603.84 260.84 13 0.2901 93.97% 92.61% 75x

1627.52 0.0014 1637.19 258.88 0.0037 1667.90 265.55 20 0.4652 98.16% 97.49% 127x

1632.03 0.0016 1641.93 261.30 0.0051 1725.14 278.69 18 0.4014 95.18% 93.76% 79x

1946.99 0.0019 1958.55 310.58 0.0057 2040.27 328.48 23 0.4943 95.99% 94.55% 87x

1561.62 0.0020 1570.75 247.17 0.0061 1658.93 267.96 21 0.5266 94.68% 92.24% 86x

1745.86 0.0021 1756.23 278.64 0.0063 1880.92 304.91 25 0.5247 93.37% 91.38% 83x

95.69% 94.38% 99x

65.305780710r10
62.93492679r9
59.29512078r8
62.72426457r7
48.49399676r6
72.53332105r5
66.42367274r4
55.50288493r3

%blkwirelength#sinknet

Experimental Results 3

In comparison with SBI:
– the average mean delay error of 

SBDE is 4.31%4.31%
– the error of standard deviation is 

within 5.62%5.62% on the average
– the speedup is 99x99x on the average
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Experimental Results 4

In comparison with SBI:
– the average mean delay error of 

SBDE is 4.3%4.3%
– the error of standard deviation is 

within 8.98%8.98% on the average
– the speedup is 53x53x on the average

DBDE SBDE SBI SBDE vs. SBI

net delay runtime delay sd runtime delay sd #buf runtime delay sd runtime

mcu0

mcu1

n107

n189

n313

n786

n869

n873

poi3

1149.70 0.0020 1157.39 190.32 0.0070 1165.96 190.98 21 0.7889 99.26% 99.65% 113x

1849.71 0.0020 1861.91 304.38 0.0080 1917.39 311.12 18 0.3329 97.11% 97.83% 42x

639.99 0.0010 643.36 102.66 0.0060 720.07 131.80 13 0.5789 89.35% 77.89% 96x

1727.20 0.0030 1738.50 285.20 0.0110 1768.46 316.06 30 0.5858 98.31% 90.24% 53x

1801.14 0.0030 1812.44 293.51 0.0080 2034.04 367.97 22 0.4369 89.11% 79.77% 55x

3842.54 0.0050 3867.33 628.67 0.0140 4082.36 677.60 20 0.3050 94.73% 92.78% 22x

3137.13 0.0030 3156.68 506.37 0.0090 3271.70 528.52 15 0.2440 96.48% 95.81% 27x

1418.88 0.0020 1427.59 227.48 0.0080 1455.53 262.77 25 0.4456 98.08% 86.57% 56x

3516.91 0.0030 3537.35 554.27 0.0090 3578.88 561.88 39 0.0905 98.84% 98.64% 10x

95.70% 91.02% 53x

46.75 63960 20 poi3
37.05 49720 20 n873
81.42 43270 21 n869
83.64 54520 32 n786
82.65 55840 19 n313
59.86 58100 29 n189
41.75 12790 17 n107
78.13 41380 19 mcu1
65.53 39920 18 mcu0

%blkwirelength#sinknet
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Results Summary

In the presence of process variations, SBDE
tightens the lower bound and gives a more 
accurate estimation than DBDE can do.
SBDE can achieve 10x~149x10x~149x faster than SBI
while only 2.5x~6x2.5x~6x slower than DBDE.
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Conclusion

We propose a statistical buffered delay estimation 
method which considers the effect of process 
variations and the presence of buffer blockages.

We show that the deterministic buffered delay 
estimation using the worst case corner, i.e., μ+3σ, 
will be over-pessimistic.

The experimental results show the efficiency and 
accuracy of our statistical estimation technique.

Useful for earlier stages such as floorplanning
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Thank You

Q & A
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