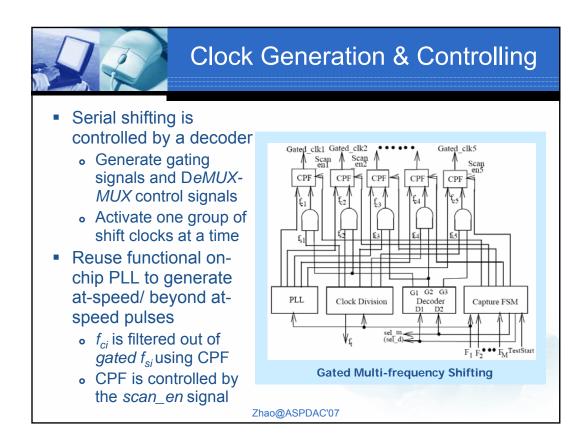
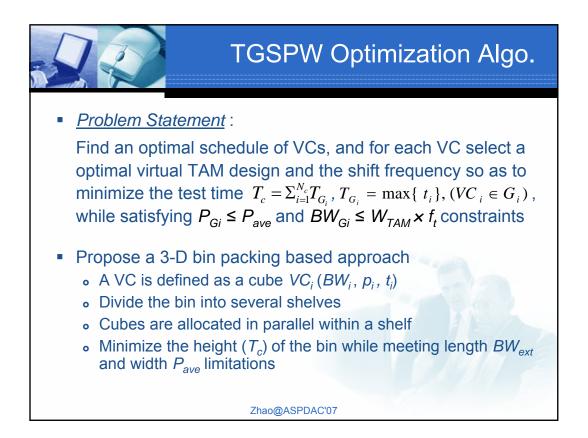
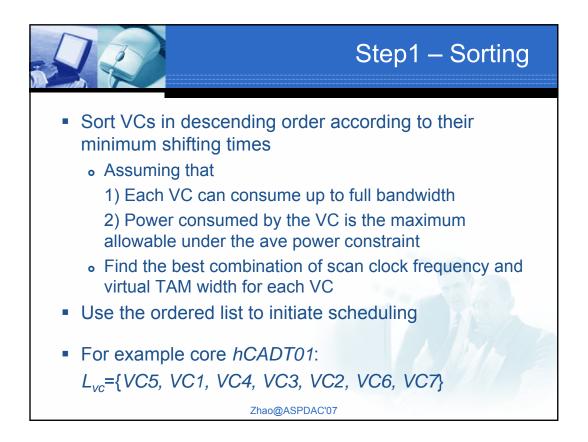
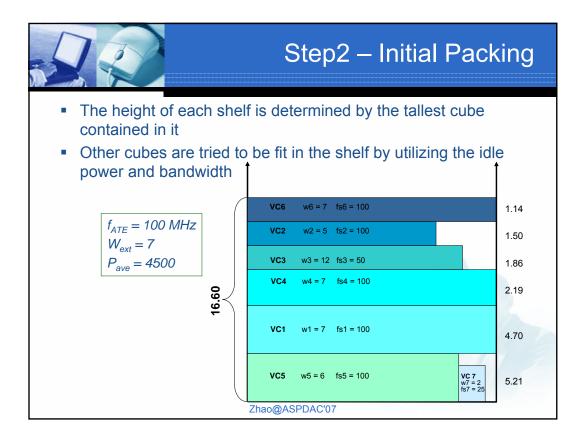

• Slower scan-clock frequency results in higher pattern shifting time

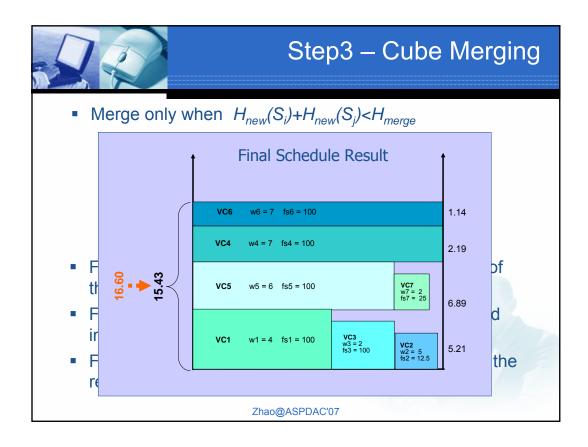

$$t_{i} = \frac{\max(s_{i}, s_{o}) \cdot n_{v} + \min(s_{i}, s_{o})}{f_{s_{i}}} + n_{v} \cdot t_{c} \approx \frac{L_{\max}^{i}(w_{i})}{f_{s_{i}}} \times n_{v}$$
• Higher scan-clock frequency results in higher power consumption

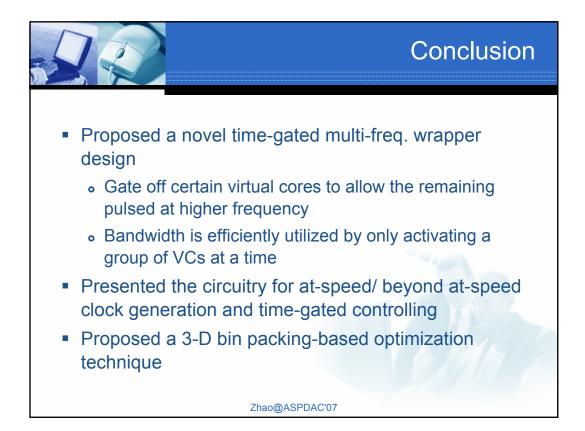

$$p_{i} = \frac{Pow_{i} \times f_{s_{i}}}{F_{\max}}$$
• Bandwidth matching requirement

$$\sum_{i=1}^{N} (w_{i} \times f_{s_{i}}) = W_{TAM} \times f_{t}$$
• A balance among test freq. and WSC width is required for minimizing the overall test time








		A Te	est	Ca	ISE	- (Cor	re <i>hCAE</i>	DT01
-	Test	parameter	s for	7 vi	rtual	core	S		
	num	f_{func} (MHz)	Nin	Nout	N _{bi}	Pow	N _{sc}	Ţ	
	1	200	109	32	72	2572	16	Ť	
	2	533	144	67	72	450	3	1	
	3	120	89	8	72	930	10	Ī	
	4	750	111	31	72	1314	6		
	5	500	117	224	72	2605	5		
	6	330	146	68	72	576	11	-	
	7	250	15	30	72	40	4		
								- A Martin	_
	num				Lsc	j .			
	1	{168 168 166	166 163	8 163 16	3 163 1	162 162 1	162 162	2 151 151 151 151 }	
	2			{	150 15	0 150}			
	3		C C			93 93 93	,		
	4					219 219 2			
	5			C C		1 521 52	,	-	
	6		{82			18 18 1	7 17 17	7}	1-2-1
	7			{	10 10 1	10 10}			
			Zhao	@ASP	DAC'0	7			

					Si	mul	atio	n &	Co	mp	aris	on
	TOO											1
			appro				ms tr	ne pa	aralle	l arci	nitec	ture
	as in	MF	₽[Xu	-DAC	C'051							
			L,									
		_	1/		- T	- L frage		100		111-		
		F_{AT}	$_E = 10$	JUMH	Z, I Mê	al treq	. = {_	100 -1	12.5}1	MHZ		
W _{tam}		$a_{ve} = 15$			ave = 30			ave = 45			$P_{ave} = c$	
	T [21]	T_{new}	$\delta T(\%)$	T [21]	T_{new}	$\delta T(\%)$	T [21]	T_{new}	$\delta T(\%)$	T [21]	T_{new}	$\delta T(\%)$
16	T [21] 20.84	T _{new} 16.90	$\delta T(\%)$ 18.90	T [21] 10.42	9.13	$\delta T(\%)$ 12.38	T [21] 7.44	<i>T_{new}</i> 6.94	$\delta T(\%)$ 6.72	T [21] 7.44	7.53	δT(%) -1.21
16 15	T [21] 20.84 20.84	T _{new} 16.90 16.90	δT(%) 18.90 18.90	T [21] 10.42 10.42	7 _{new} 9.13 10.42	δT(%) 12.38 0	T [21] 7.44 8.76	T _{new} 6.94 8.33	$\delta T(\%)$ 6.72 4.90	T [21] 7.44 7.49	7.53 8.33	δT(%) -1.21 -11.21
16 15 14	T [21] 20.84 20.84 20.84	T _{new} 16.90 16.90 16.90	$\delta T(\%)$ 18.90 18.90 18.90	T [21] 10.42 10.42 10.42	Tnew 9.13 10.42 10.42	δT(%) 12.38 0 0	T [21] 7.44 8.76 8.88	T _{new} 6.94 8.33 8.79	$\delta T(\%)$ 6.72 4.90 1.01	T [21] 7.44 7.49 8.88	T _{new} 7.53 8.33 8.79	δT(%) -1.21 -11.21 1.01
16 15 14 13	T [21] 20.84 20.84 20.84 20.84 20.84	$\frac{T_{new}}{16.90}$ 16.90 16.90 16.90	$\delta T(\%)$ 18.90 18.90 18.90 18.90	T [21] 10.42 10.42 10.42 10.42	$\begin{array}{r} T_{new} \\ 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \end{array}$	$\delta T(\%)$ 12.38 0 -1.05	T [21] 7.44 8.76 8.88 10.42	T _{new} 6.94 8.33 8.79 8.93	$\delta T(\%)$ 6.72 4.90 1.01 14.29	T [21] 7.44 7.49 8.88 9.59	T _{new} 7.53 8.33 8.79 8.79	δT(%) -1.21 -11.21 1.01 8.34
16 15 14 13 12	T [21] 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ \hline 16.90 \\ 16.90 \\ \hline 16.90 \end{array}$	$\delta T(\%)$ 18.90 18.90 18.90 18.90 18.90	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 10.42 \end{array}$	$\begin{array}{r} T_{new} \\ 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \end{array}$	$\delta T(\%)$ 12.38 0 -1.05 -1.05	T [21] 7.44 8.76 8.88 10.42 10.42	$\begin{array}{r} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \end{array}$	$\frac{\delta T(\%)}{6.72}$ $\frac{4.90}{1.01}$ 14.29 6.42	T [21] 7.44 7.49 8.88 9.59 10.42	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 8.79 \\ 9.15 \end{array}$	$\delta T(\%)$ -1.21 -11.21 1.01 8.34 12.18
16 15 14 13 12 11	T [21] 20.84 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ \hline 16.90 \\ 16.90 \\ \hline 16.90 \\ \hline 16.97 \end{array}$	δT(%) 18.90 18.90 18.90 18.90 18.90 18.57	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ \hline 11.62 \end{array}$	$\begin{array}{r} T_{new} \\ 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \end{array}$	$\delta T(\%)$ 12.38 0 -1.05 -1.05 4.30	T [21] 7.44 8.76 8.88 10.42 10.42 10.42	$\begin{array}{r} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 9.75 \\ \end{array}$	$\frac{\delta T(\%)}{6.72}$ $\frac{4.90}{1.01}$ 14.29 6.42 6.42	T [21] 7.44 7.49 8.88 9.59 10.42 10.42	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 8.79 \\ 9.15 \\ 9.75 \end{array}$	$\delta T(\%)$ -1.21 -11.21 1.01 8.34 12.18 6.42
16 15 14 13 12 11 10	$\begin{array}{c} T \ [21] \\ \hline 20.84 \end{array}$	$\frac{T_{new}}{16.90}$ 16.90 16.90 16.90 16.90 16.97 17.07	$\delta T(\%)$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09	$\begin{array}{c} T \ [21] \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \end{array}$	$\begin{array}{c} T_{new} \\ 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \end{array}$	$\delta T(\%)$ 12.38 0 -1.05 -1.05 4.30 6.95	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \end{array}$	$\frac{\delta T(\%)}{6.72}$ 4.90 1.01 14.29 6.42 6.42 8.95	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ \hline 8.88 \\ 9.59 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \end{array}$	$\delta T(\%)$ -1.21 -11.21 1.01 8.34 12.18 6.42 8.95
16 15 14 13 12 11 10 9	T [21] 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.46 \end{array}$	$\delta T(\%)$ 18.90 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20	$\begin{array}{c} T \ [21] \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \\ 13.00 \end{array}$	$\begin{array}{c} T_{new} \\ 9.13 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.78 \end{array}$	$\begin{array}{c} T_{new} \\ 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline 6.72 \\ 4.90 \\ 1.01 \\ 14.29 \\ \hline 6.42 \\ 6.42 \\ 8.95 \\ \hline 7.43 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ \hline 8.88 \\ 9.59 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.78 \end{array}$	$\begin{array}{c} T_{new} \\ 7.53 \\ 8.33 \\ 8.79 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \end{array}$	$\delta T(\%)$ -1.21 -11.21 1.01 8.34 12.18 6.42 8.95 7.43
16 15 14 13 12 11 10 9 8	T [21] 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.46 \\ 17.57 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ \hline 11.62 \\ \hline 12.08 \\ \hline 13.00 \\ \hline 14.48 \end{array}$	$\begin{array}{c} T_{new} \\ 9.13 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \\ 13.50 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ \hline 8.88 \\ 10.42 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.78 \\ \hline 14.88 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline 6.72 \\ 4.90 \\ 1.01 \\ 14.29 \\ \hline 6.42 \\ 6.42 \\ \hline 8.95 \\ 7.43 \\ 9.27 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ \hline 8.88 \\ 9.59 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.78 \\ \hline 14.88 \end{array}$	$\begin{array}{c} T_{new} \\ 7.53 \\ 8.33 \\ 8.79 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline -1.21 \\ -11.21 \\ 1.01 \\ 8.34 \\ 12.18 \\ 6.42 \\ 8.95 \\ \hline 7.43 \\ 9.27 \end{array}$
16 15 14 13 12 11 10 9 8 7	T [21] 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ \hline 16.97 \\ \hline 17.07 \\ \hline 17.46 \\ \hline 17.57 \\ \hline 19.29 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69 7.40	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ \hline 10.42 \\ 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.08 \\ \hline 13.00 \\ \hline 14.48 \\ \hline 17.76 \end{array}$	$\begin{array}{c} T_{new} \\ 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \\ 13.50 \\ 16.57 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \\ 6.70 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ \hline 8.88 \\ 10.42 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.78 \\ \hline 14.88 \\ \hline 15.63 \end{array}$	$\begin{array}{r} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline 6.72 \\ 4.90 \\ 1.01 \\ 14.29 \\ 6.42 \\ \hline 6.42 \\ 8.95 \\ 7.43 \\ 9.27 \\ 1.27 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ \hline 8.88 \\ 9.59 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.78 \\ \hline 14.88 \\ \hline 15.63 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline -1.21 \\ -11.21 \\ 1.01 \\ 8.34 \\ 12.18 \\ 6.42 \\ 8.95 \\ 7.43 \\ 9.27 \\ 1.27 \end{array}$
16 15 14 13 12 11 10 9 8 7 6	T [21] 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.46 \\ 17.57 \\ 19.29 \\ 19.60 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69 7.40 5.95	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \\ 13.00 \\ 14.48 \\ 17.76 \\ 20.84 \end{array}$	$\begin{array}{c} T_{new} \\ 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \\ 13.50 \\ 16.57 \\ 17.19 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \\ 6.70 \\ 17.51 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.20 \end{array}$	$\begin{array}{r} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline \delta T(\%) \\ \hline 6.72 \\ \hline 4.90 \\ \hline 1.01 \\ \hline 14.29 \\ \hline 6.42 \\ \hline 6.42 \\ \hline 8.95 \\ \hline 7.43 \\ \hline 9.27 \\ \hline 1.27 \\ \hline 10.46 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ 8.88 \\ 9.59 \\ \hline 10.42 \\ \hline 10.42 \\ \hline 11.62 \\ \hline 12.78 \\ \hline 14.88 \\ \hline 15.63 \\ \hline 19.18 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
16 15 14 13 12 11 10 9 8 7 6 5	T [21] 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.07 \\ 17.46 \\ 17.57 \\ 19.29 \\ 19.60 \\ 23.38 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69 7.40 5.95 6.60	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \\ 13.00 \\ 14.48 \\ 17.76 \\ 20.84 \\ 23.24 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 11.53 \\ 11.24 \\ 12.56 \\ 13.50 \\ 16.57 \\ 17.19 \\ 21.81 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \\ 6.70 \\ 17.51 \\ 6.15 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.20 \\ 23.24 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline \delta T(\%) \\ \hline 6.72 \\ \hline 4.90 \\ \hline 1.01 \\ \hline 14.29 \\ \hline 6.42 \\ \hline 6.42 \\ \hline 8.95 \\ \hline 7.43 \\ 9.27 \\ \hline 7.43 \\ 9.27 \\ \hline 1.27 \\ \hline 10.46 \\ \hline 6.15 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ 8.88 \\ 9.59 \\ \hline 10.42 \\ \hline 11.62 \\ 12.78 \\ \hline 14.88 \\ \hline 15.63 \\ \hline 19.18 \\ \hline 23.24 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \end{array}$	$\begin{array}{r} \delta T(\%) \\ \hline +1.21 \\ -11.21 \\ 1.01 \\ 8.34 \\ 12.18 \\ 6.42 \\ 8.95 \\ 7.43 \\ 9.27 \\ 1.27 \\ 10.38 \\ 6.15 \end{array}$
$ \begin{array}{r} 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ \end{array} $	T [21] 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.46 \\ 17.57 \\ 19.29 \\ 19.60 \\ 23.38 \\ 26.16 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69 7.40 5.95 6.60 12.09	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \\ 13.00 \\ 14.48 \\ 17.76 \\ 20.84 \\ 23.24 \\ 29.76 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \\ 13.50 \\ 16.57 \\ 17.19 \\ 21.81 \\ 24.84 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \\ 6.70 \\ 17.51 \\ 6.15 \\ 16.53 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.20 \\ 23.24 \\ 29.01 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \\ 24.84 \end{array}$	$\frac{\delta T(\%)}{6.72}$ $\frac{6.72}{4.90}$ 1.01 14.29 6.42 6.42 8.95 7.43 9.27 1.27 10.46 6.15 14.37	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ 8.88 \\ 9.59 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.18 \\ 23.24 \\ 29.01 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \\ 24.84 \end{array}$	δT(%) -1.21 -11.21 1.01 8.34 12.18 6.42 8.95 7.43 9.27 1.27 10.38 6.15 14.37
$ \begin{array}{r} 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ \end{array} $	$\begin{array}{c} T \ [21] \\ \hline 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.84 \\ 20.76 \\ 41.68 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.46 \\ 17.57 \\ 19.29 \\ 19.60 \\ 23.38 \\ 26.16 \\ 34.06 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69 7.40 5.95 6.60 12.09 18.28	$\begin{array}{c} T \ [21] \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \\ 13.00 \\ 14.48 \\ 17.76 \\ 20.84 \\ 23.24 \\ 29.76 \\ 38.36 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \\ 13.50 \\ 16.57 \\ 17.19 \\ 21.81 \\ 24.84 \\ 34.06 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \\ 6.70 \\ 17.51 \\ 6.15 \\ 16.53 \\ 11.21 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.20 \\ 23.24 \\ 29.01 \\ 38.36 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 8.93 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \\ 24.84 \\ 34.06 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline \delta T(\%) \\ \hline 6.72 \\ 4.90 \\ 1.01 \\ 14.29 \\ \hline 6.42 \\ \hline 6.42 \\ \hline 8.95 \\ 7.43 \\ 9.27 \\ 1.27 \\ 10.46 \\ \hline 6.15 \\ 14.37 \\ 11.21 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ 8.88 \\ 9.59 \\ 10.42 \\ \hline 10.42 \\ 11.62 \\ \hline 12.78 \\ 14.88 \\ 15.63 \\ 19.18 \\ 23.24 \\ 29.01 \\ \hline 38.36 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \\ 24.84 \\ 34.06 \end{array}$	δT(%) -1.21 -11.21 -11.21 1.01 8.34 12.18 6.42 8.95 7.43 9.27 1.27 10.38 6.15 14.37 11.21
$ \begin{array}{r} 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ \end{array} $	T [21] 20.84	$\begin{array}{c} T_{new} \\ \hline 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.90 \\ 16.97 \\ 17.07 \\ 17.46 \\ 17.57 \\ 19.29 \\ 19.60 \\ 23.38 \\ 26.16 \end{array}$	$\frac{\delta T(\%)}{18.90}$ 18.90 18.90 18.90 18.90 18.90 18.57 18.09 16.20 15.69 7.40 5.95 6.60 12.09	$\begin{array}{c} T \ [21] \\ \hline 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.08 \\ 13.00 \\ 14.48 \\ 17.76 \\ 20.84 \\ 23.24 \\ 29.76 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 9.13 \\ 10.42 \\ 10.42 \\ 10.53 \\ 10.53 \\ 11.12 \\ 11.24 \\ 12.56 \\ 13.50 \\ 16.57 \\ 17.19 \\ 21.81 \\ 24.84 \end{array}$	$\begin{array}{c} \delta T(\%) \\ 12.38 \\ 0 \\ 0 \\ -1.05 \\ -1.05 \\ 4.30 \\ 6.95 \\ 3.38 \\ 6.76 \\ 6.70 \\ 17.51 \\ 6.15 \\ 16.53 \end{array}$	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ 8.76 \\ 8.88 \\ 10.42 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.20 \\ 23.24 \\ 29.01 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 6.94 \\ 8.33 \\ 8.79 \\ 9.75 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \\ 24.84 \end{array}$	$\frac{\delta T(\%)}{6.72}$ $\frac{6.72}{4.90}$ 1.01 14.29 6.42 6.42 8.95 7.43 9.27 1.27 10.46 6.15 14.37	$\begin{array}{c} T \ [21] \\ \hline 7.44 \\ \hline 7.49 \\ 8.88 \\ 9.59 \\ 10.42 \\ 11.62 \\ 12.78 \\ 14.88 \\ 15.63 \\ 19.18 \\ 23.24 \\ 29.01 \end{array}$	$\begin{array}{c} T_{new} \\ \hline 7.53 \\ 8.33 \\ 8.79 \\ 9.15 \\ 9.75 \\ 10.58 \\ 11.83 \\ 13.50 \\ 15.43 \\ 17.19 \\ 21.81 \\ 24.84 \end{array}$	$\begin{array}{c} \delta T(\%) \\ \hline \delta T(\%) \\ \hline -1.21 \\ -11.21 \\ 1.01 \\ \hline 8.34 \\ 12.18 \\ \hline 6.42 \\ \hline 8.95 \\ 7.43 \\ 9.27 \\ 1.27 \\ 10.38 \\ \hline 6.15 \\ 14.37 \end{array}$

