

Systematic Scan Reconfiguration

Ahmad A. Al-Yamani January 26, 2007

Scan Test Challenges

- * Test data volume challenge
 - > Limited IOs & unlimited increase in transistors
 - > Exponential increase in test data volume
- Tester pin count challenge
 - > Tester cost is almost linear in number of pins
 - Full accessibility is needed with limited pin count
- Test time challenge
 - > Critical path
 - > Hard to parallelize test loading massively
 - Limited pin count (accessibility problem)
 - Wiring problem (area/performance constraint problem)
- Test power challenge
 - > High activity leading to high power consumption.
 - Circuit may be damaged

Illinois Scan Architecture

MAX NAME AND A

* Segments within a scan chain are compatible

- > load them in parallel
- Otherwise i₁ Scan chain 1,1
 Serially
 Serially
 Evaluation
 Data volume_M Scan chain M,1
 Pin count
 Test time
 - > Power consumption

Limitation

Illinois Scan

> Reduction if and only if ALL SEGMENTS ARE COMPATIBLE

> Pattern 1 : 00X10XXX0001XX

- 1st segment: 00X10
- 2nd segment: 0XXX0 COMPATIBLE \Rightarrow 5 bits only
- 3rd segment: 001XX

> Pattern 2 : 00X10XXX0011XX

- 1st segment: 00X10
- 2nd segment: 0XXX0 > NOT COMPA
- 3rd segment: 011XX

NOT COMPATIBLE \Rightarrow 15 bits

LSI LOGIC

Segmented Addressable Scan

Avoiding clock gating!

Systematic Scan Reconfiguration

LSI LOGIC

While there are undetected faults

- Select a set of segments and tie them together
- > Feed that to the ATPG tools with the undetected faults
- > Save the generated patterns and drop the detected faults
- The segments selection should be done in a way that reduces the number of addresses required to cover the patterns
- No need for don't cares
- The ATPG tool will do the optimization

Power can be controlled by choosing how many segments to activate at a time

Take 8 segments with addresses (000 through 111)

> Tie all segments together (Call this class I)

- Run the ATPG tool to get as many faults as possible
- Load patterns together and apply them
- > Tie the first four together and last four together (class II)
 - Odd and 1dd
- > Use these second and third configurations
 - d0d and d1d (tying 0, 1, 4, 5 and 2, 3, 6, 7)
 - dd0 and dd1 (tying 0, 2, 4, 6 and 1, 3, 5, 7)
- > With every configuration
 - Load patterns for the 1st segment
 - Load patterns for the 2nd segment
 - Apply the patterns

 If you want to cut power consumption by 75%, use the following configurations (class IV)

- > 00d 01d 10d 11d
- > 0d0 0d1 1d0 1d1
- > d00 d01 d10 d11

 Finally, if there any left over faults, get them with serial mode (class VIII)

> 000 001 010 011 100 101 110 111

Test Cases

Silver Street

	flip-	Gate	Clock	Test
	flops	count	domains	Patterns
Ckt1	29K	350K	10	1.5K
Ckt2	35.5K	450K	26	3.4K

LSI LOGIC

LSI LOGIC Ckt1 – Data Volume & Test Time SAF

Total Data Volume		40 Mb	Compression Ratio
SSR Data Volume	32 Segments	3.3 Mb	12x
	64 Segments	2.4 Mb	16x
	128 Segments	2.0 Mb	19x
	256 Segments	1.9 Mb	21x

LSI LOGIC Ckt2 – Data Volume & Test Time SAF CALLER & BARRY COMMENT

COLO

Total Data Volume		120 Mb	Compression Ratio
SSR Data Volume	32 Segments	7.5 Mb	16x
	64 Segments	5.8 Mb	20x
	128 Segments	4.8 Mb	25x
	256 Segments	3.7 Mb	32x

LSI LOGIC Ckt1 – Data Volume & Test Time TF

-

Total Data Volume		98 Mb	Compression Ratio
SSR Data Volume	32 Segments	7.7 Mb	12x
	64 Segments	5.3 Mb	18x
	128 Segments	4.5 Mb	22x
	256 Segments	3.6 Mb	27x

LSI LOGIC Ckt2 – Data Volume & Test Time TF AND A REAL PROPERTY OF THE PARTY OF THE PART

Contra-

Total Data Volume		300 Mb	Compression Ratio
SSR Data Volume	32 Segments	21.7Mb	14x
	64 Segments	14.1Mb	21x
	128 Segments	11.8Mb	25x
	256 Segments	7.7Mb	39x

SSR Coverage - SAF

Normal Coverage SSR Coverage

SSR Coverage - transition

Normal Coverage SSR Coverage

Runtime is an order of magnitude longer!

* How about reducing the number of configurations?

- Config-1: All 64 segments connected to one scan input
 - # of faults detected = 1,049,342
 - # of patterns = 3,633
- > Config-2: 64 separate scan chains (serial mode)
 - # of faults detected = 9,358
 - # of patterns = 366
- > 57 + 366 = 423 standard patterns
 - Compared to original 1,381 patterns = 3x data reduction
- > Cutting SAS run time by 50%

Total test data volume SAS test data volume
 Basic ATPG runtime
 SAS runtime

Runtime reduction (TF)

Total test data volume SAS test data volume
Basic ATPG runtime SAS runtime

Power-optimized SAS

 $P = \sum_{n} \frac{1}{2} C_n \Delta V V dd \alpha_n f$

Assume, normal shift speed is 20MHz

- > For class I patterns, shift at 20MHz
- > For class II patterns, shift at 40MHz
- > For class IV patterns, shift at 80MHz
- > For class VIII patterns, shift at 160MHz
- If tester is limited to 100 MHz
 - > Power-optimized partitioning is class IV

Speed up by parallelization AND by faster shifting
 > Always S speed up factor (S = No of segments)

Conclusion

Necessity is the mother of invention

LSI LOGIC

* SSR

- > Test data volume
- > Test time
- > Tester pin requirements
- > Power optimized
- > Minimal hardware overhead
- > No don't care bits requirements