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Motivation

Power supply integrity issues
— Functional failure
— Performance failure

Ldi/dt drop becoming significant

— Large amounts of extrinsic decap added to
suppress Ldi/dt

= Avg Current = Transient

Explicitly added decap Is not free [Apache]-ITRS 2004

— Decap oxide leakage increasing with each technology generation
— Decap leakage may limit the amount of extrinsic decap

Proposed work
— Decap added optimally to improve circuit performance
— Utilizes the timing slack available in the circuit
« Non-critical gates can tolerate relatively larger supply drop
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Prior Works On Decap Allocation

« Allocate decap with objective of minimizing drop at all nodes
* Decap sizes w; are the opt. variables

A

V(0
vdd g, = violation at node n
90%Vdd F--=--hg 7= A
: < ! Noise Metric=2 g,
g, nodes
A le, t

Minimize  Noise Metric

Subjectto  constraints on decap sizes

 Adjoint sensitivity method for sensitivity of noise metric to decap sizes

Sapatnekar [ISPD-02], Roy [DAC-00], Li [DAC-05]
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Proposed Approach

* Prior approaches
— Constrain voltage drop at all nodes regardless of connected gates being critical
— May not be optimal for maximum performance

 QObservation
— (Gates which are not timing critical can afford relatively larger voltage drop
— Lesser decap area and leakage for same performance if circuit has timing slack

’ » v
— Larger drop

Path with timing slack

 Proposed approach
— Allocate decaps in order to minimize circuit delay
— Not focused on minimizing the drop at all the power grid nodes
— Utilizes timing slacks for driving the decap allocation optimization problem
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Problem Definition

POWER GRID VDD

Decap Candidates

C,, decap sizes for minimum circuit delay = ?

AV, AV, V(%)

:jbs - Vdd |
AV, &
L

 (Gate n assumed to be operating at supply voltage (Vdd — AV)
— Conservative analysis which assumes all gates switching with local worst drops
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Gate Delay Model

 Characterize delay of gate, i from its input j as a linear function of
— Local supplies, Vdd. and Vss, (reduction in drive strength)
— Input driver's supplies, V’dd, and Vss; (input signal swing)

Djl. = Dﬂ.0 + kﬂ.AVddi + ljl-AVSSl- + mjl.AVddj + nﬂ.AVSSj
tr; = tr;) + p,AVdd, + q;AVss, + r,AVdd; + s5,AVss;
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Primal Problem (PP)

Vdd
- ’ Vaa
in
Cell B 5 ,/’,_ 3 a3 . 1 al outl
,,:',"in2 V
/,’""6 Visa ss1 . sink
___S_r_c___q . Vdd4 Vdd2 '._b_____
Decap | \:‘\3:\\ in3 : a, 5 a
8 4 out2
— 5 e n4 Vv
W] Vss4 552
Minimize % C,
Subjectto (1) a; =T, V j = input(0)

(2) a+tD;=xq, YV j =input(i), V gatesi

(3) D, = Djl.O -+ kleVddl. + lﬂ.AVssi + mjiA vdd, + njl.AVSSj
YV i =input(j), V gatesj

4 0<C<w, .,

(5) Voltage Supplies a fn of decap sizes  Gx(t)+ Cx(t) = u()

1= 1.Nypeap
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Lagrangian Relaxation Problem (LRP)

— a3
5,/ 3 ) ¢ 1 )\’
Ty ~Jo
/6 Ae3 TNy Sink
S Ty %h 0
A ::\\: . ﬁ a4 2 a2 /7 /7\12 0
g | 4

Subjectto (1) D; =D,° + k,Avdd, + [;AVss, + m;AVdd, + n;AVss;
Vi = input(j), V gatesj
(2) 0<C<wypri=1.Ny,
(3) Voltage Supplies a fn of decap sizes ~ Gx(t) + Cx(¢) = u(t)
@) 120

-/, denotes the criticality of gate i from its input j

max >
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Kuhn Tucker Conditions

If X is optimal, sensitivity of objective fn wrt. arrival times = 0

dob) =0 V gatesi

oai

2, =Xl Vgatesi

k=output(i)  j=input(i)
}\’53
N N
[ a a
5 3 p—29 1 1
N\ AN
6 }L63 z N 'y sink
7 L .
___Lsi_c___.;\\\ 32 > 0
‘?:\? /_\ /
ANIN 2 212 /
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g™ | A 4

Using KT conditions, obj. becomes independent of 4, for given set of A

Minimize X C +X X A4,D;- X 4,7,
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Solving the Lagrangian Relaxation Problem

 Using the delay model expression, objective function becomes a
linear function of supply voltages

Minimize X Cl- + 2 X ﬂ,ﬁDﬁ -2 j‘j()T() Dji - Djio + kjiAVddi T ljiAVSSi + mjiAVddj T ”jiAVSSj

T~ 7~

Minimize X C, + X a,AVdd; + % BAVss,; - 2 2,7,
Subjectto (1) 0C,LC

max >

1= 1..Nypeop
(2) Voltage Supplies a fn of decap sizes

Where, o, = Z}Lji.kji + Z}Lik'mik and 3, = 27\7-1-. Zji + Z?Lik.nik

Jj=input(i) k=output(i) Jj=input() k=output(i)

« Needed: Gradients of the objective function wrt decap sizes

O (C +XaAVdd. + X SAVss,)
oC
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Gradient Computation

 Direct method: Single variable parameter, many measurement variables
— Total # of simulations = # of nodes in the grid

 Adjoint method: Many variable parameters, single measurement objective
— Total # of simulations = # of gates in the circuit

 Proposed Approach: Many variable parameters, many measurement variables

— Modified adjoint sensitivity method

— Measure derivative of voltage in the original circuit at all decap locations
— Simulate adjoint circuit with multiple current excitations simultaneously applied

oZ T ,
o =y ve T =ty ydr

 Sensitivity of objective function obtained in only one simulation of
adjomt g”d Conn, Visweswariah [SPECS, Jiffytune]
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Gradient Computation lllustration

L I . |
Adjoint Grid o =, veT-0pc




Overall Global Optimization Flow

Set initial set of As and
decap sizes

1l

Original grid
simulation

1L 7“jik+1 — xjik+1 } PkSik

Formulate Lagrangian
subproblem <::| Update set of As

I i

Adjoint grid simulation

Compute slacks

-~

Gradient computation | |
using convolution
I | AT and RAT
: based on voltage
Solve Lagrangian q
rops
subproblem

Original grid
::> simulation

Decap Sizes
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Pat

N Based Heuristic

Start with min. decap

sizes

4L
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Original grid simulation
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Gradient Computation
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ecap budge
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Experimental Setup

Current profiles - A triangular waveform applied at all the gates

Gates placed through APR

LANCELQOT used for non-linear optimization

C++ MNA solver used for original and adjoint grid simulation
ISCAS85 benchmarks synthesized in 0.13u library

Power Grid description

Name | # Layers Die area # nodes # elements #C4s

Gridl 4 700ux700p 10,804 17,468 12Vdd, 12Vss

Grid2 4 1.2mmx1.2mm 17,530 29,746 28Vdd, 28Vss
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Experimental Results

* |so-decap comparison with uniform decap distribution

Circuit delay % delay redn. runtimes
Grid Kt # # decap
A © gates | decaps | budget Nom. | uniform Global | Greedy | Global | Greedy | Global | Greedy
' opt. opt. opt. opt. opt. opt.
Gridl | c432 | 212 476 |[2.38nF | 1.498ns | 1.798ns [1.621ns|1.640ns| 9.84% | 8.79% | 11ml5s | 1ml5s
Gridl | ¢499 | 553 595 |2.98nF | 1.233ns | 1.480ns | 1.308ns|1.394ns | 11.62% | 5.81% 9m4ls 1m57s
Gridl | c1355| 654 793 [3.97nF | 1.839ns | 2.207ns | 1.878ns|1.913ns | 14.90% | 13.32% | 11m43s | 2m58s
Gridl [ c1908| 543 579 |2.89nF | 2.088ns | 2.506ns |2.251ns|2.256ns | 10.17% | 9.98% | 20m24s | 25.83s
Gridl | c2670| 1043 | 1190 |3.57nF | 1.622ns | 1.946ns | 1.754ns | 1.764ns | 9.86% | 9.35% | 52m33s | 8m4ls
Grid2 | ¢3540| 1492 | 1559 | 7.79nF | 2.301ns | 2.761ns |2.498ns|2.564ns | 9.52% | 7.31% | 109m59s | 23m49s
Grid2 | ¢5315| 2002 | 2217 | 6.65nF | 2.080ns | 2.769ns |2.409ns |2.416ns | 13.00% | 12.75% | 221m24s | 61m18s
' 188m36
Grid2 | c6288| 3595 | 3712 |8.15nF | 5.186ns | 6.223ns - 5.820ns - 6.48% >4hrs .
Grid2 | c7552| 2360 | 2571 |7.18nF | 2.975ns | 3.571ns - 3.262ns - 8.65% >4dhrs | 63mO03s

Avg Delay Reduction: 10.11%
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Experimental Results

* |so-delay comparison with uniform decap distribution

niform | Optim.
Gridl| c432 |1.498ns| 1.640ns | 3.55nF | 2.38nF [32.98%
Gridl| c499 |1.233ns| 1.394ns | 3.49nF | 2.98nF |[17.60%
Grid1| c1355 |1.839ns| 1.913ns | 6.65nF | 3.97nF [40.33%
Grid1| c1908 |2.088ns| 2.256ns | 6.15nF | 2.89nF |[52.92%
Grid2| ¢c2670 |1.622ns| 1.764ns | 6.96nF | 3.57nF [95.80%
Grid2| c3540 |2.301ns| 2.564ns | 10.04nF [ 7.80nF |[22.37%
Grid2| ¢5315 |2.080ns| 2.416ns | 12.20nF | 6.65nF |45.56%
Grid2| c6288 [5.186ns| 5.820ns | 9.74nF | 8.15nF |16.31%
Grid2| ¢7552 [2.978ns| 3.262ns | 13.26nF | 7.18nF |45.85%
Avg Decap Reduction: 35.51%

Circuit Delay (ns)

o N o
[e] ~ (e¢] ©
1 L 1 L 1 1
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Total Decap (nF)
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Conclusions and Future Work

 Proposed a method for timing aware decap allocation
— Efficient sensitivity computation of circuit delay to decap sizes
— Utilizes timing slacks available in the circuit

— Iso-decap comparison with uniform decap distribution demonstrates 10%
improvement in circuit timing

— Iso-delay comparison with uniform decap distribution demonstrates 35%
reduction in total decap

 Future Work
— Validation on larger circuits
— Explore convergence and better optimization algorithms such as IPOPT
— Exploit grid-locality for reducing run-time of grid simulations
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