Timing-Aware Decoupling Capacitance Allocation in Power Distribution Networks

Sanjay Pant, David Blaauw

Electrical Engineering and Computer Science University of Michigan

Motivation

- Power supply integrity issues
 - Functional failure
 - Performance failure
- Ldi/dt drop becoming significant
 - Large amounts of extrinsic decap added to suppress Ld*i*/d*t*
- Explicitly added decap is not free
 - Decap oxide leakage increasing with each technology generation
 - Decap leakage may limit the amount of extrinsic decap
- Proposed work
 - Decap added optimally to improve circuit performance
 - Utilizes the timing slack available in the circuit
 - Non-critical gates can tolerate relatively larger supply drop

[Apache]-ITRS 2004

Outline

- Traditional Methods and Prior Work
- Proposed Approach
- Experimental Results
- Conclusion

Prior Works On Decap Allocation

- Allocate decap with objective of minimizing drop at all nodes
- Decap sizes w_i are the opt. variables

• Adjoint sensitivity method for sensitivity of noise metric to decap sizes

Sapatnekar [ISPD-02], Roy [DAC-00], Li [DAC-05]

Proposed Approach

- Prior approaches
 - Constrain voltage drop at all nodes regardless of connected gates being critical
 - May not be optimal for maximum performance
- Observation
 - Gates which are not timing critical can afford relatively larger voltage drop
 - Lesser decap area and leakage for same performance if circuit has timing slack

- Proposed approach
 - Allocate decaps in order to minimize circuit delay
 - Not focused on minimizing the drop at all the power grid nodes
 - Utilizes timing slacks for driving the decap allocation optimization problem

Outline

- Traditional Methods and Prior Work
- Proposed Approach
 - Primal Problem
 - Lagrangian Relaxation and Gradient Computation
 - Path-based greedy algorithm
- Experimental Results
- Conclusion

Problem Definition

- Gate *n* assumed to be operating at supply voltage $(Vdd \Delta V_n)$
 - Conservative analysis which assumes all gates switching with local worst drops

Gate Delay Model

- Characterize delay of gate, *i* from its input *j* as a linear function of
 - Local supplies, Vdd_i and Vss_i (reduction in drive strength)
 - Input driver's supplies, Vdd_i and Vss_i (input signal swing)

 $D_{ji} = D_{ji}^{\ 0} + k_{ji} \Delta V dd_i + l_{ji} \Delta V ss_i + m_{ji} \Delta V dd_j + n_{ji} \Delta V ss_j$ $tr_{ji} = tr_{ji}^{\ 0} + p_{ji} \Delta V dd_i + q_{ji} \Delta V ss_i + r_{ji} \Delta V dd_j + s_{ji} \Delta V ss_j$

Library re-characterization A load-slope based 7x7 table containing D_{ji}^{0} , k, l, m, n

Delay measured w.r.t. 50%Vdd_{nominal} point

Primal Problem (PP)

Outline

- Traditional Methods and Prior Work
- Proposed Approach
 - Primal Problem
 - Lagrangian Relaxation and Gradient Computation
 - Path-based greedy algorithm
- Experimental Results
- Conclusion

Lagrangian Relaxation Problem (LRP)

 $\begin{array}{ll} \textit{Minimize} & \Sigma \ C_i + \Sigma \ \lambda_{j0}(a_j - T_0) + \Sigma \ \Sigma \ \lambda_{ji}(a_j + D_{ji} - a_i) \\ \textit{Subject to} & (1) \ D_{ji} = D_{ji}^{\ 0} + k_{ji} \Delta V dd_i + l_{ji} \Delta V ss_i + m_{ji} \Delta V dd_j + n_{ji} \Delta V ss_j \\ & \forall \ i = input(j), \ \forall \ gates \ j \\ (2) \ 0 \le C_i \le w_{max}, \ i = 1..N_{decap} \\ & (3) \ Voltage \ Supplies \ a \ fn \ of \ decap \ sizes \ Gx(t) + C\dot{x}(t) = u(t) \\ & (4) \ \lambda \ge 0 \end{array}$

λ_{ji} denotes the criticality of gate i from its input j

Kuhn Tucker Conditions

• If λ is optimal, sensitivity of objective fn wrt. arrival times = 0

• Using KT conditions, obj. becomes independent of a_i for given set of λ

Minimize $\sum C_i + \sum \sum \lambda_{ji} D_{ji} - \sum \lambda_{j0} T_0$

Solving the Lagrangian Relaxation Problem

Using the delay model expression, objective function becomes a linear function of supply voltages

$$\begin{array}{lll} \textit{Minimize} & \Sigma \ C_i + \Sigma \ \Sigma \ \lambda_{ji} D_{ji} - \Sigma \ \lambda_{j0} T_0 & D_{ji} = D_{ji}^{\ 0} + k_{ji} \Delta V dd_i + l_{ji} \Delta V ss_i + m_{ji} \Delta V dd_j + n_{ji} \Delta V ss_j \\ & \textit{Minimize} & \Sigma \ C_i + \Sigma \ \alpha_i \Delta V dd_i + \Sigma \ \beta_i \Delta V ss_i - \Sigma \ \lambda_{j0} T_0 \\ & \textit{Subject to} & (1) & 0 \leq C_i \leq C_{max} \ , \ i = 1..N_{decap} \\ & (2) \ \textit{Voltage Supplies a fn of decap sizes} \end{array}$$

Where,
$$\alpha_i = \sum \lambda_{ji} k_{ji} + \sum \lambda_{ik} m_{ik}$$
 and $\beta_i = \sum \lambda_{ji} l_{ji} + \sum \lambda_{ik} n_{ik}$
 $j = input(i)$ $k = output(i)$ $j = input(i)$ $k = output(i)$

• Needed: Gradients of the objective function wrt decap sizes $\frac{\partial}{\partial C}(C_i + \sum \alpha_i \Delta V dd_i + \sum \beta_i \Delta V ss_i)$

Gradient Computation

- Direct method: Single variable parameter, many measurement variables
 - Total # of simulations = # of nodes in the grid
- Adjoint method: Many variable parameters, single measurement objective
 - Total # of simulations = # of gates in the circuit
- Proposed Approach: Many variable parameters, many measurement variables
 - Modified adjoint sensitivity method
 - Measure derivative of voltage in the original circuit at all decap locations
 - Simulate adjoint circuit with multiple current excitations simultaneously applied

$$\frac{\partial Z}{\partial C} = \int_0^T \psi_C(T-t) \dot{v}_C(t) dt$$

 Sensitivity of objective function obtained in only one simulation of adjoint grid *Conn, Visweswariah [SPECS, Jiffytune]*

Gradient Computation Illustration

Overall Global Optimization Flow

Path Based Heuristic

Outline

- Traditional Methods and Prior Work
- Proposed Approach
 - Primal Problem
 - Lagrangian Relaxation and Gradient Computation
 - Path-based greedy algorithm
- Experimental Results
- Conclusion

Experimental Setup

- Current profiles A triangular waveform applied at all the gates
- Gates placed through APR
- LANCELOT used for non-linear optimization
- C++ MNA solver used for original and adjoint grid simulation
- ISCAS85 benchmarks synthesized in 0.13µ library
- Power Grid description

Name	# Layers	Die area	# nodes	# elements	#C4s
Grid1	4	700µx700µ	10,804	17,468	12Vdd, 12Vss
Grid2	4	1.2mmx1.2mm	17,530	29,746	28Vdd, 28Vss

Experimental Results

• Iso-decap comparison with uniform decap distribution

a • •	ckt	# gates	# decaps	decap budget	Circuit delay				% delay redn.		runtimes	
Grid					Nom.	uniform	Global opt.	Greedy opt.	Global opt.	Greedy opt.	Global opt.	Greedy opt.
Grid1	c432	212	476	2.38nF	1.498ns	1.798ns	1.621ns	1.640ns	9.84%	8.79%	11m15s	1m15s
Grid1	c499	553	595	2.98nF	1.233ns	1.480ns	1.308ns	1.394ns	11.62%	5.81%	9m41s	1m57s
Grid1	c1355	654	793	3.97nF	1.839ns	2.207ns	1.878ns	1.913ns	14.90%	13.32%	11m43s	2m58s
Grid1	c1908	543	579	2.89nF	2.088ns	2.506ns	2.251ns	2.256ns	10.17%	9.98%	20m24s	25.83s
Grid1	c2670	1043	1190	3.57nF	1.622ns	1.946ns	1.754ns	1.764ns	9.86%	9.35%	52m33s	8m41s
Grid2	c3540	1492	1559	7.79nF	2.301ns	2.761ns	2.498ns	2.564ns	9.52%	7.31%	109m59s	23m49s
Grid2	c5315	2002	2217	6.65nF	2.080ns	2.769ns	2.409ns	2.416ns	13.00%	12.75%	221m24s	61m18s
Grid2	c6288	3595	3712	8.15nF	5.186ns	6.223ns	-	5.820ns	-	6.48%	>4hrs	188m36 s
Grid2	c7552	2360	2571	7.18nF	2.975ns	3.571ns	-	3.262ns	-	8.65%	>4hrs	63m03s

Avg Delay Reduction: 10.11%

Experimental Results

• Iso-delay comparison with uniform decap distribution

Grid Ckt	Ckt	Nom. Delay	Delay constraint	Decap Allocated		% decap	
	CKt			Uniform	Optim.	redn.	1
Grid1	c432	1.498ns	1.640ns	3.55nF	2.38nF	32.98%	2.1 -
Grid1	c499	1.233ns	1.394ns	3.49nF	2.98nF	17.60%	2.0
Grid1	c1355	1.839ns	1.913ns	6.65nF	3.97nF	40.33%	
Grid1	c1908	2.088ns	2.256ns	6.15nF	2.89nF	52.92%	
Grid2	c2670	1.622ns	1.764ns	6.96nF	3.57nF	95.80%	5 1 .6
Grid2	c3540	2.301ns	2.564ns	10.04nF	7.80nF	22.37%	1.5 -
Grid2	c5315	2.080ns	2.416ns	12.20nF	6.65nF	45.56%	1.0 1.5 2.0 2.5 3.0 3.5 4.0
Grid2	c6288	5.186ns	5.820ns	9.74nF	8.15nF	16.31%	Total Decap (IIF)
Grid2	c7552	2.978ns	3.262ns	13.26nF	7.18nF	45.85%	

Avg Decap Reduction: 35.51%

Conclusions and Future Work

- Proposed a method for timing aware decap allocation
 - Efficient sensitivity computation of circuit delay to decap sizes
 - Utilizes timing slacks available in the circuit
 - Iso-decap comparison with uniform decap distribution demonstrates 10% improvement in circuit timing
 - Iso-delay comparison with uniform decap distribution demonstrates 35% reduction in total decap
- Future Work
 - Validation on larger circuits
 - Explore convergence and better optimization algorithms such as IPOPT
 - Exploit grid-locality for reducing run-time of grid simulations