Efficient Second-Order Iterative Methods for IR Drop Analysis in Power Grid

Yu Zhong and Martin D. F. Wong Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Outline

- Introduction
- First-order iterative methods
- Second-order node-based method
- Second-order row-based method
- Experimental Results
- Conclusions

Introduction

Power delivery issues are getting significant

- Increasing complexity of VLSI circuits
- Increasing power (current) consumption
- Decreasing supply voltage
- Reduced noise margin and increased gate delay
- Power grid network must be modeled and analyzed accurately.
- Difficult since power grid networks are very large.

Introduction

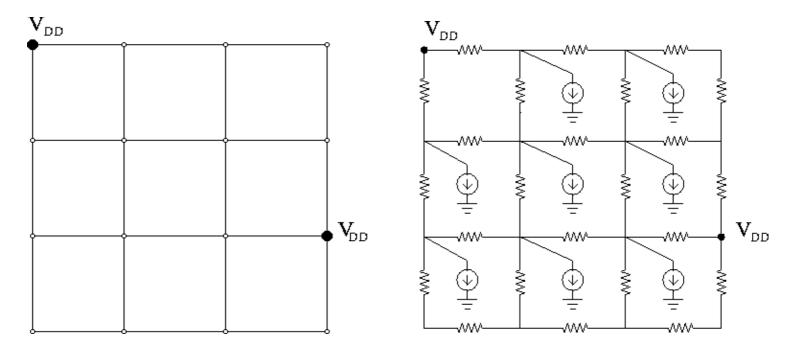
Large scale simulation

- Usually millions of elements in power grid
- Even DC analysis is difficult
- SPICE-level accuracy simulation is required
- Runtime is slow
- Memory inefficiency
 - e.g. 1 million node \rightarrow 1 trillion elements in matrix
 - Short of memory

Tradeoff between runtime and accuracy

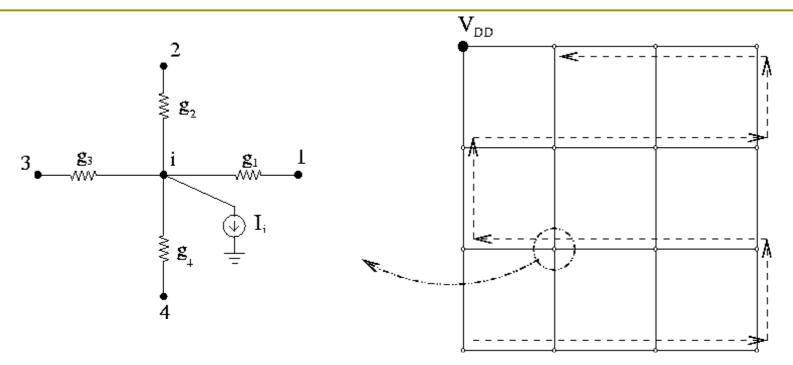
Model of Power Grid

DC model for power grid.



How to solve voltage at each node in the power grid?

First-order Node-based Methods



Apply Kirchoff's current law at node i

$$x_{i} = \frac{(g_{1}x_{1} + g_{2}x_{2} + g_{3}x_{3} + g_{4}x_{4} - I_{i})}{(g_{1} + g_{2} + g_{3} + g_{4})}$$

First-order Node-based Methods

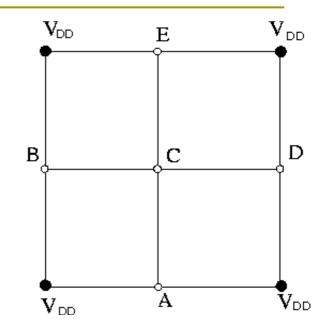
A simple example of the generic first-order node-based method

$$V_{DD} = 1.8$$
 $I = 0.1$ $g = 1$

Initial values for A, B, C, D and E are 0. First iteration:

VA: 1.1667 = (1/3)(1.8+1.8+0)-0.1/3VB: 1.1667 = (1/3)(1.8+1.8+0)-0.1/3Vc: 0.5583 = (1/4)(1.1667+1.1667+0+0)-0.1/4VD: 1.3528 = (1/3)(0.5583+1.8+1.8)-0.1/3VE: 1.3528 = (1/3)(0.5583+1.8+1.8)-0.1/3

Repeat until convergence! Final results: VA=1.7375, VB=1.7375, Vc=1.7213, VD =1.7375, VE=1.7375



First-order Node-based Methods

$$\overline{x}_{i}^{(k+1)} = \left(\sum_{j < i} g_{ij} x_{j}^{(k+1)} + \sum_{j > i} g_{ij} x_{j}^{(k)} - I_{i}\right) / \sum_{j} g_{ij}$$

Generic first-order node-based method:

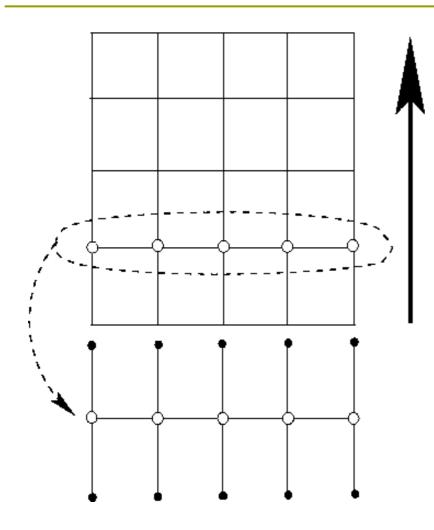
$$x_i^{(k+1)} = \overline{x}_i^{(k+1)}$$

Improved first-order node-based method:

$$x_i^{(k+1)} = \omega \overline{x}_i^{(k+1)} + (1 - \omega) x_i^{(k)}$$

We can improve the convergence rate of the generic first-order node-based method by choosing an appropriate extrapolation factor \mathcal{O} .

First-order Row-based Methods



Generic first-order rowbased method:

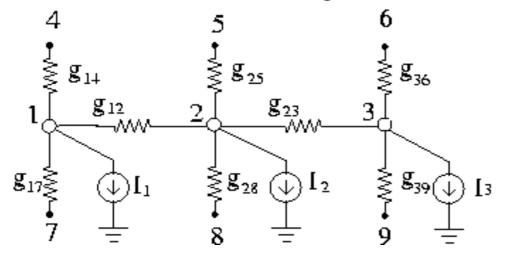
1. Group the nodes on the same row.

2. Solve the whole row together in linear time.

3. Do iteration of row-based traversals until converges.

First-order Row-based Methods

One row can be solved in linear time because the system matrix is a tri-diagonal matrix.



Linear equations for nodes 1, 2, and 3 on the one row

$$\begin{bmatrix} g_{12} + g_{14} + g_{17} & -g_{12} \\ -g_{12} & g_{23} + g_{25} + g_{12} + g_{28} & -g_{23} \\ -g_{23} & g_{36} + g_{23} + g_{39} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -I_1 + g_{14}x_4 + g_{17}x_7 \\ -I_2 + g_{25}x_5 + g_{28}x_8 \\ -I_3 + g_{36}x_6 + g_{39}x_9 \end{bmatrix}$$

First-order Row-based Methods

- Similar to the improved first-order node-based method, we may improve the convergence speed of the generic first-order row-based method by choosing an optimal extrapolation factor Ø.
 - Improved first-order row-based method:

$$x_i^{(k+1)} = \omega \overline{x}_i^{(k+1)} + (1 - \omega) x_i^{(k)}$$

where \overline{x}_i represents x_i in generic first-order row-based method, which represents the voltage vector on the row i.

Second-order Iterative Methods

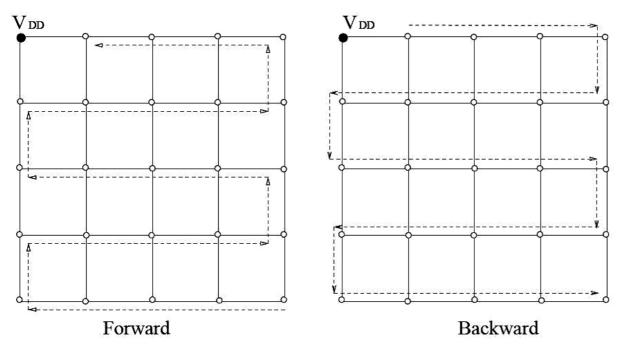
- Upgrade a first-order iterative method to obtain a second-order iterative method.
- First-order iterative method: $\overline{\mathbf{x}}^{(n+1)} = G\mathbf{x}^{(n)} + \mathbf{k}_1$
- Consider a second-order iterative method defined by

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \alpha(\mathbf{x}^{(n)} - \mathbf{x}^{(n-1)}) + \beta(\bar{\mathbf{x}}^{(n+1)} - \mathbf{x}^{(n)})$$

where $\overline{x}^{(n+1)}$ denotes the first-order iteration, and α and β are important coefficients to be decided, which influence the speed of convergence.

Second-order Node-based Method

Choose the symmetric improved node-based method as the first-order method, then upgrade it to the secondorder node-based method.



In each iteration, first half iteration is the same as one iteration of the improved node-based method, while the second half iteration is the improved node-based method taken in reverse order.

Second-order Node-based Method

For each node *i*, the second order iterative method can be rewritten as

$$x_i^{(n+1)} = \beta \bar{x}_i^{(n+1)} + (1 - \beta + \alpha) x_i^{(n)} - \alpha x_i^{(n-1)}$$

Suppose we know the iterative coefficients α and β , then we can solve the voltage $x_i^{(n+1)}$ at node i in iteration (n+1) by two parts: first-order symmetric improved node-based iteration $\overline{x}_i^{(n+1)}$, and the influence of its previous two iterations $x_i^{(n)}$ and $x_i^{(n-1)}$.

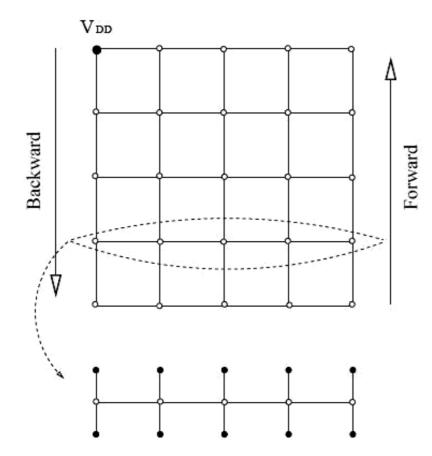
Second-order Node-based Method

Second-Order Node-based method

```
initialize \mathbf{x}_0 = \mathbf{x}^{(0)}
initialize \mathbf{x_1} = \mathbf{x}^{(1)}
/*x^{(1)} is the 1st iteration of improved node-based method */
new x2
set |\epsilon| \ll 1
if max_i|x_1[i] - x_0[i]| < |\epsilon|, return
       /*solve x_i^{(n+1)} = (1 - \beta + \alpha) x_i^{(n)} - \alpha x_i^{(n-1)}.*/
       for node i=1 to N^2
             x_{2}[i] = (1 - \beta + \alpha)x_{1}[i] - \alpha x_{0}[i]
             x_0[i] = x_1[i]
       /*symmetric improved node-based method.*/
       for node i=1 to N^2
             forward improved node-based method x_1[i]
       for node i=N^2 down to 1
             backward improved node-based method x_1[i]
       /*Solve x^{(n+1)}.*/
       for node i=1 to N^2
             x_{2}[i] = x_{2}[i] + \beta x_{1}[i]
             x_1[i] = x_2[i]
```

Second-order Row-based Method

To upgrade the first-order row-based method to a second-order method, we choose a first-order symmetric improved row-based method.



In each iteration, the first half is the same as the improved rowbased method, while the second half iteration is the improved row-based method taken in reversed order.

Second-order Row-based Method

For each row i, the second-order row-based method can be expressed as

$$\mathbf{x}_i^{(n+1)} = \beta \bar{\mathbf{x}}_i^{(n+1)} + (1 - \beta + \alpha) \mathbf{x}_i^{(n)} - \alpha \mathbf{x}_i^{(n-1)}$$

where $\overline{\mathbf{x}}_{i}^{(n+1)}$ denotes the symmetric improved rowbased method. Suppose we know the iterative coefficients, then we can solve the voltages on row *i* in iteration (*n*+1) by two parts: the symmetric improved row-based iteration $\overline{\mathbf{x}}_{i}^{(n+1)}$, and the influence of its own previous two iterations $\mathbf{x}_{i}^{(n)}$ and $\mathbf{x}_{i}^{(n-1)}$.

Second-order Row-based Method

```
Second-Order Row-based method
```

```
initialize \mathbf{x}_0 = \mathbf{x}^{(0)}
initialize -1 --(1)
/*x^{(1)} is the 1st iteration of row-based method.*/
new x2
set |\epsilon| \ll 1
if max_i|x_1[i] - x_0[i]| < |\epsilon| return
       /*solve x^{(n+1)} = (1 - \beta + \alpha)x^{(n)} - \alpha x^{(n-1)}.*/
       for node i=1 to N^2
            x_{2}[i] = (1 - \beta + \alpha)x_{1}[i] - \alpha x_{0}[i]
            x_0[i] = X_1[i]
       /*symmetric improved row-based method.*/
       for row j=1 to N
            forward improved row-based method x_1[i]
       for row j=N down to 1
            backward improved row-based method x_1[i]
       /*Solve x^{(n+1)}.*/
       for node i=1 to N^2
            x_2[i] = x_2[i] + \beta x_1[i]
            x_1[i] = x_2[i];
```

Consistency of 2nd-order Method

Given a first-order iterative method $\mathbf{x}^{(n+1)} = G\mathbf{x}^{(n)} + \mathbf{k}_1$

Consider the second-order method $\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \alpha(\mathbf{x}^{(n)} - \mathbf{x}^{(n-1)}) + \beta(G\mathbf{x}^{(n)} + k_1 - \mathbf{x}^{(n)})$

Lemma 1: If the 1st-order iterative method converges to the exact solution, the 2nd-order method will converge to the same solution for any $\alpha \neq 0$ and $\beta \neq 0$.

Convergence of 1st-order Method

Lemma 2: An iterative method $\mathbf{x}^{(n+1)} = G\mathbf{x}^{(n)} + \mathbf{k}_1$

converges if and only if S(G)<1, where S(G) is the spectral radius of matrix G.

- Spectral radius $S(G) = \max_{\lambda \in S_G} |\lambda|$ where S_G is the set of all eigenvalues of G.
- The smaller S(G) is, the faster the iterative method converges. Thus, one should minimize S(G) to maximize the rate of convergence

Convergence of 2nd-order Method

Consider a general form of 2nd-order method:

$$\mathbf{x}^{(n+1)} = G_1 \mathbf{x}^{(n)} + G_2 \mathbf{x}^{(n-1)} + k_2$$

Observe that

$$\begin{pmatrix} \mathbf{x}^{(n)} \\ \mathbf{x}^{(n+1)} \end{pmatrix} = \begin{pmatrix} 0 & I \\ G_2 & G_1 \end{pmatrix} \begin{pmatrix} \mathbf{x}^{(n-1)} \\ \mathbf{x}^{(n)} \end{pmatrix} + \begin{pmatrix} 0 \\ k_2 \end{pmatrix}$$

The iterative matrix of the 2nd-order method is

$$\hat{G} = \begin{pmatrix} 0 & I \\ G_2 & G_1 \end{pmatrix}$$

- A necessary and sufficient condition that the iterative method converges for all initial conditions is that $S(\hat{G}) < 1$.
- If we minimize $S(\hat{G})$, the rate of convergence is maximized.

Convergence of 2nd-order Method

Lemma 3: The eigenvalues λ of \hat{G} are related to the eigenvalues μ of G as follows

$$\mu + \frac{1 - \beta + \alpha}{\beta} = \frac{\lambda^2 + \alpha}{\beta\lambda}$$

Suppose the eigenvalues μ of G are real numbers that lie within the interval $[\mu_{\min}, \mu_{\max}]$, where $\mu_{\max} < 1$. We can compute α and β to minimize $S(\hat{G})$, which maximize the rate of convergence of the second order method. **Theorem 1**: For any first-order iterative method $\mathbf{x}^{(n+1)} = G\mathbf{x}^{(n)} + \mathbf{k}_1$

which has real eigenvalues, if we know the eigenvalue bounds μ_{\min} and μ_{\max} of its iterative matrix *G*, the optimal coefficients in the second order method are

$$\alpha = |\lambda|^{2}$$

$$\beta = \frac{2(1+|\lambda|^{2})}{2-(\mu_{\max}+\mu_{\min})}$$
where λ satisfies $2|\lambda| = \frac{(\mu_{\max}-\mu_{\min})}{2-(\mu_{\max}+\mu_{\min})}(1+|\lambda|^{2})$

Why Symmetric Iterative Method?

- Problem is formulated as linear equation Ax = b, where
 A is a symmetric and positive definite matrix.
- Consider improved first-order node-based method:
 x_i^(k+1) = ωx̄_i^(k+1) + (1 ω)x_i^(k)
 It converges with any initial solution when 0 < ω < 2.
 But the eigenvalues of its iterative matrix *G* are not all real if ω > 1.
 - In Theorem 1, we assume that the 1st-order method have real eigenvalues, to obtain the optimal α and β . So we cannot use the original improved node-based method directly as the 1st-order method, because the eigenvalues of its iterative matrix *G* are not all real.

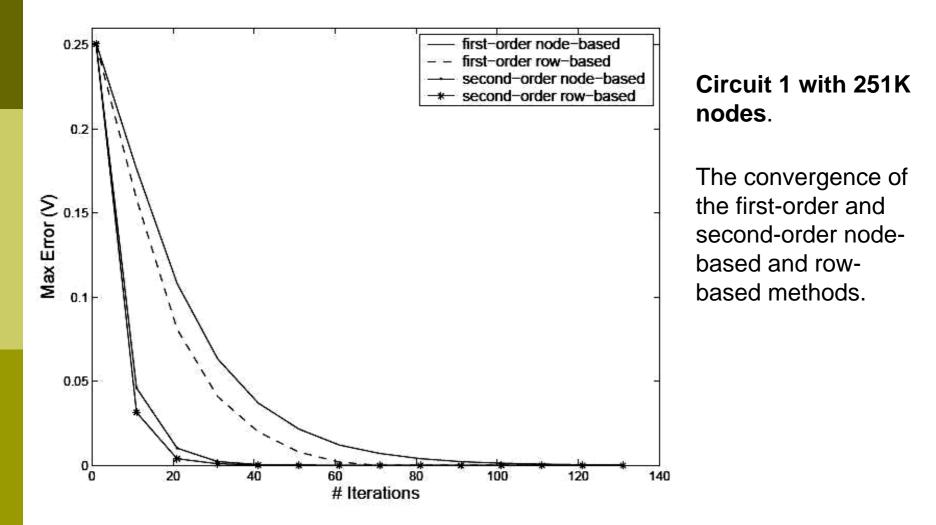
Why Symmetric Iterative Method?

- Symmetric improved first-order node-based method converges with any initial condition when $0 < \omega < 2$. And the eigenvalues of its iterative matrix G are real and nonnegative for all real ω .
- So we use symmetric improved node-based method as the first-order iterative method, to obtain optimal iterative coefficients α and β by Theorem 1.

Circuit C1 with 251K nodes.

Method	#Iterations	CPU time (s)
First-order Node-based	134	2.69
First-order Row-based	81	1.86
Second-order Node-based	46	1.67
Second-order Row-based	34	1.28

Machine: Linux PC with 2.8-GHz CPU and 4-GB RAM.



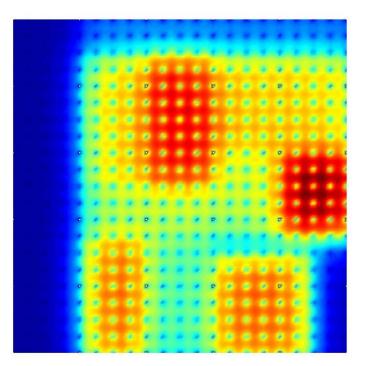
Ckt	#nodes	Random Walk		First-Order		Second-Order	
				Node	Row	Node	Row
		MaxE	Time	Time	Time	Time	Time
		(mV)	(m:s)	(m:s)	(m:s)	(m:s)	(m:s)
C1	251K	5.4	4:55	0:02	0:02	0:02	0:01
C2	251K	6.0	11:04	0:09	0:04	0:04	0:03
C3	1M	7.5	37:40	2:02	1:24	1:08	0:49
C4	4M	6.3	152:22	3:54	2:30	2:01	1:35
C5	16M	4.9	1019:16	40:09	23:52	21:58	15:05
C6	25M	6.1	2943:56	76:50	47:39	42:16	32:20

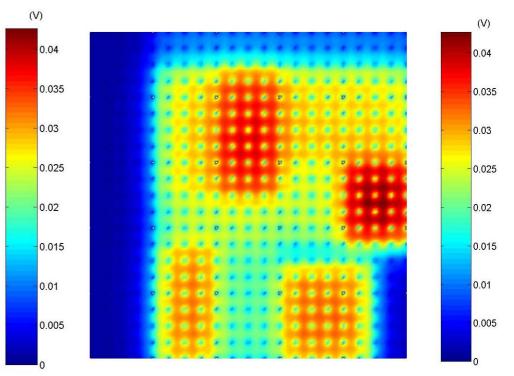
Runtime and error comparison

		Random Walk		2nd-Order Row	
Circuits	#nodes	MaxE (mV)	time (min:sec)	MaxE (mV)	time (min:sec)
C1	251K	5.4	4:55	1.8	0:00
C2	251K	6.0	11:04	2.0	0:01
C3	1M	7.5	37:40	1.9	0:13
C4	4M	6.3	152:22	2.0	0:25
C5	16M	4.9	1019:16	1.9	4:42
C6	25M	6.1	2943:56	2.0	9:55

Results (cont'd)

Circuit C5 with 16 million nodes by second-order row-based method





Runtime: 4 min 42 sec Max error: 1.9mV Average error: 0.07 mV

Runtime: 15 min 5 sec no error

Conclusions

- Power grid simulation is a big challenge.
- Second-order Node-based and Row-based methods
 - No need to construct system matrix
 - Based on local grid structure to save memory
 - Significantly faster than first-order node-based and row-based methods
 - Choice of α and β to improve convergence speed
- Experimental results show the advantage in both accuracy and runtime
 - 25 million nodes, runtime is about 30 minutes without error, and 10 minutes with maximum error 2 mV.