Thermal-Aware 3D IC Placement Via Transformation

Jason Cong, Guojie Luo, Jie Wei and Yan Zhang
Computer Science Department
University of California, Los Angeles

January 24, 2007

Supported by GSRC, NSF

Outline

- Technology Background
- Problem Formulation \& Existing Works
-Our 3D Placement Framework
- Transformation for 3D Placement
- RCN Graph-based Refinement
- Experiment Results
-Conclusions and Future Work

Technology Background

- MITLL .18um 3D SOI Technology

3DOGC Opens to This Metal Level

Problem Formulation

$\left(x_{i}, y_{i}, z_{i}\right)$ is assigned to every cell i such that
\bullet Wire length $\boldsymbol{\Sigma} \mathrm{I}(\mathrm{e})$ and \#via $\boldsymbol{\Sigma} \mathrm{v}(\mathrm{e})$ are minimized

- $l(e)=\max _{v_{i}, v_{j} \in e}\left|x_{i}-x_{j}\right|+\max _{v_{i}, v_{j} \in e}\left|y_{i}-y_{j}\right|$
- $v(e)=\max _{v_{i}, v_{j} \in e}\left|Z_{i}-Z_{j}\right|$
- I(e) + av(e) is the half perimeter wire length in 3D IC
\star Non-overlap and temperature constraints are met

Review of Existing 3D placements

\rightarrow Min-cut

- [Das, Chandrakasan, Reif, ASP-DAC 2003]
\bullet Min-cut + Simulated Annealing
- [Balakrishnan, Nanda, Easwar, Lim, ASP-DAC 2005]
- Force Directed
- [Goplen, Sapatnekar, ICCAD 2003]

3D Placement Framework: mPL-3D

-Features

2D Wirelength- and/or Thermal- Driven Placement

- Existing well-performing 2D placers can be reused
- Simple but effective transformation heuristics
- Trade-off between wire length and \#via to adapt different manufacturing ability
- Refinement through RCN graph

mPL-3D Framework - Thermal Model

Resistive network model

- [Wilkerson, et al. ITherm 2004]
-Resistive chain for fast analysis
- [Cong, Zhang, ICCAD 2005]
- Basic principal is to put high power cells close to heat sink

Transformation for 3D Placement

-Local Stacking Transformation

- Transformation through Folding
-Window-based Stacking / Folding

Local Stacking Transformation

\checkmark 2D placement on area KA

- For 3D chip with K device layers and each with area A
\rightarrow Shrink: $\left(x_{i}, y_{i}\right) \rightarrow\left(x_{i} / \sqrt{K}, y_{i} / \sqrt{K}\right)$
-Tetris-style 3D legalization
- Cost R = $\alpha d+\beta v+\gamma t$
- Minimize displacement, \#via and thermal cost

Transformation through Folding

Layer assignment and location mapping according to the folded order

- Folding-2

Comparison between Stacking and Folding

-Stacking

- Tend to optimize 2D wire length
- Result in great number of via
\rightarrow Folding
- Tend to avoid over-optimized local nets
- Less optimization in wire length
- Trade-off is needed for different manufacturing ability

Window-based Stacking / Folding

-Divde 2D placement into NxN windows

- Apply stacking or folding in a window

-Effect of stacking or folding would be spreaded out, and trade-offs are achieved with different N

RCN Graph-based Refinement

-Construction of Relaxed Conflict-Net (RCN) graph

- Vertex Set consists of all the cells and nets
- Two types of edges
- Conflict edge. Cost is imposed if cells are "overlapped"

- Net edge. Cost relates to the layer assignment

RCN Graph Example

RCN Graph-based Refinement

- Layer reassignment
- Objective: minimize total cost of RCN graph
- Variables: layer assignment (z)
- Constants: (x, y) location of cells
\rightarrow Algorithm [Chang, Cong, IEEE Trans. CAD, 1999]
- Optimal solution can be achieved if the graph is a tree
- Induced sub-tree is constructed, and it will cover $40 \%-50 \%$ nodes
- Iteratively optimize over these sub-trees to achieve good solution on the whole graph

Experiment Setup

- IBMv1 placement benchmark
- 2D placer mPL 5.0
- Initial 2D placement
- Final layer-by-layer legalization and detailed placement
- Transformations
- LST (10\%) - Local Stacking with 10\% overlap during refinement
- LST (20\%) - Local Stacking with 20\% overlap during refinement
- Folding-2 - Folding-2 Transformation
- Folding-4 - Folding-4 Transformation
- 8×8 LST(10%) -8×8 windows and apply LST(10%) on each window
- LST (10\%) w/ temp. opt. - LST(10\%) with temp. cost during legalization

Experiment Results (1/2)

-Comparison of different transformations

circuit	2D mPL5	LST (10\%)		LST (20\%)		Folding-2		Folding-4		8x8 LST (10\%)	
		WL	via \#								
ibm01	5.19E+06	$2.52 \mathrm{E}+06$	18519	$2.68 \mathrm{E}+06$	14102	$4.61 \mathrm{E}+06$	1671	$4.55 \mathrm{E}+06$	2476	$3.53 \mathrm{E}+06$	6688
ibm03	$1.37 \mathrm{E}+07$	$6.62 \mathrm{E}+06$	30434	$7.29 \mathrm{E}+06$	21406	$1.14 \mathrm{E}+07$	4125	$1.11 \mathrm{E}+07$	5909	$8.36 \mathrm{E}+06$	12318
ibm04	$1.67 \mathrm{E}+07$	$8.45 \mathrm{E}+06$	37414	$9.20 \mathrm{E}+06$	26871	$1.55 \mathrm{E}+07$	2940	$1.43 \mathrm{E}+07$	6388	$1.10 \mathrm{E}+07$	15315
ibm06	$2.20 \mathrm{E}+07$	$1.10 \mathrm{E}+07$	50139	$1.52 \mathrm{E}+07$	32939	$2.02 \mathrm{E}+07$	4116	$1.83 \mathrm{E}+07$	9077	$1.44 \mathrm{E}+07$	19315
ibm07	$3.73 \mathrm{E}+07$	$1.83 \mathrm{E}+07$	65093	$2.07 \mathrm{E}+07$	44715	$3.18 \mathrm{E}+07$	5932	$3.10 \mathrm{E}+07$	8755	$2.37 \mathrm{E}+07$	25021
ibm08	$3.94 \mathrm{E}+07$	$1.98 \mathrm{E}+07$	70317	$2.13 \mathrm{E}+07$	49844	$3.48 \mathrm{E}+07$	5801	$3.28 \mathrm{E}+07$	10181	$2.56 \mathrm{E}+07$	25205
ibm09	$3.46 \mathrm{E}+07$	$1.72 \mathrm{E}+07$	72787	$1.95 \mathrm{E}+07$	50755	$3.19 \mathrm{E}+07$	4540	$2.93 \mathrm{E}+07$	8257	$2.34 \mathrm{E}+07$	23836
ibm13	$6.58 \mathrm{E}+07$	$3.24 \mathrm{E}+07$	121135	$3.60 \mathrm{E}+07$	85103	$6.03 \mathrm{E}+07$	7696	$5.85 \mathrm{E}+07$	13071	$4.50 \mathrm{E}+07$	42568
ibm15	$1.65 \mathrm{E}+08$	$8.26 \mathrm{E}+07$	246509	$9.11 \mathrm{E}+07$	176018	$1.45 \mathrm{E}+08$	15128	$1.38 \mathrm{E}+08$	23662	$1.14 \mathrm{E}+08$	72956
ibm18	$2.43 \mathrm{E}+08$	$1.26 \mathrm{E}+08$	297771	$1.34 \mathrm{E}+08$	208564	$2.24 \mathrm{E}+08$	12077	$2.08 \mathrm{E}+08$	28287	$1.74 \mathrm{E}+08$	83380
Avg.	2.00	1.00	1.00	1.12	0.71	1.78	0.08	1.7	0.14	1.34	0.36

Experiment Results (2/2)

- Effect of temperature optimization

	LST, $\mathrm{r}=10 \%$,	LST, $\mathrm{r}=10 \%, \mathrm{w} /$ temp optimization		
circuit	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	WL	via \#	Temp. $\left({ }^{\circ} \mathrm{C}\right)$
ibm01	276.5	$2.81 \mathrm{E}+06$	19020	159.8
ibm03	196.7	$7.13 \mathrm{E}+06$	31780	121.6
ibm04	159.6	$9.11 \mathrm{E}+06$	40219	96.0
ibm06	160.4	$1.23 \mathrm{E}+07$	50576	103.5
ibm07	107.5	$2.01 \mathrm{E}+07$	69111	66.4
ibm08	97.7	$2.05 \mathrm{E}+07$	75397	63.2
ibm09	96.1	$1.94 \mathrm{E}+07$	78102	60.6
ibm13	249.3	$3.47 \mathrm{E}+07$	127520	156.2
ibm15	136.5	$8.58 \mathrm{E}+07$	260681	90.1
ibm18	89.4	$1.31 \mathrm{E}+08$	332012	58.7
Avg.	1.0	1.08	1.06	0.63

Conclusions and Future Work

Our contribution

- A simple but effective heuristic to reuse existing 2D placers
- Trade-offs between wire length and \#via
- A general refinement method for 3D placement
- Future work
- More folding-like heuristics for arbitrary K layers
- Mix-sized 3D placement
- White space reservation for inter-layer via
- Find out a good measurement for WL \& \#via

The End

Thank you!

