

Thermal-Aware 3D IC Placement Via Transformation

Jason Cong, Guojie Luo, Jie Wei and Yan Zhang Computer Science Department University of California, Los Angeles

January 24, 2007

Supported by GSRC, NSF

Outline

Technology Background

Problem Formulation & Existing Works

Our 3D Placement Framework

- Transformation for 3D Placement
- RCN Graph-based Refinement


Experiment Results

Conclusions and Future Work

Technology Background

MITLL .18um 3D SOI Technology

3DOGC Opens to This Metal Level

Problem Formulation

(x_i,y_i,z_i) is assigned to every cell i such that

• Wire length Σ I(e) and #via Σ v(e) are minimized

•
$$l(e) = \max_{v_i, v_j \in e} |x_i - x_j| + \max_{v_i, v_j \in e} |y_i - y_j|$$

•
$$v(e) = \max_{v_i, v_j \in e} |z_i - z_j|$$

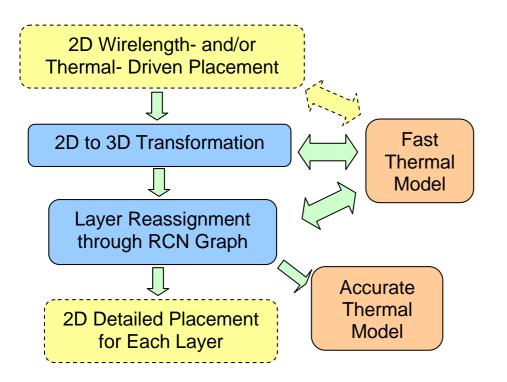
I(e) + αv(e) is the half perimeter wire length in 3D IC

Non-overlap and temperature constraints are met

Review of Existing 3D placements

Min-cut

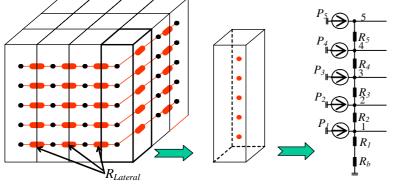
[Das, Chandrakasan, Reif, ASP-DAC 2003]


Min-cut + Simulated Annealing

[Balakrishnan, Nanda, Easwar, Lim, ASP-DAC 2005]

Force Directed

Goplen, Sapatnekar, ICCAD 2003]


3D Placement Framework: mPL-3D

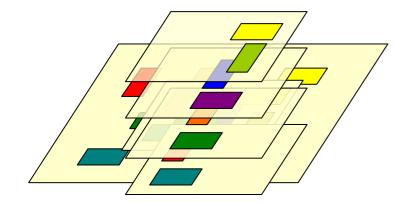
Features

- Existing well-performing 2D placers can be reused
- Simple but effective transformation heuristics
- Trade-off between wire length and #via to adapt different manufacturing ability
- Refinement through RCN graph

mPL-3D Framework – Thermal Model

Tiles Stack Array

Single Tile Stack Tile Stack Analysis


Resistive network model

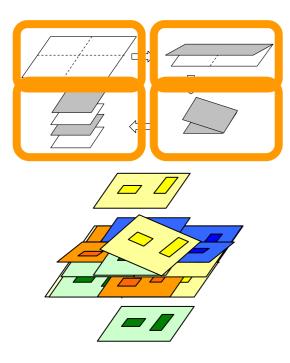
- [Wilkerson, et al. ITherm 2004]
- Resistive chain for fast analysis
 - [Cong, Zhang, ICCAD 2005]
 - Basic principal is to put high power cells close to heat sink

Transformation for 3D Placement

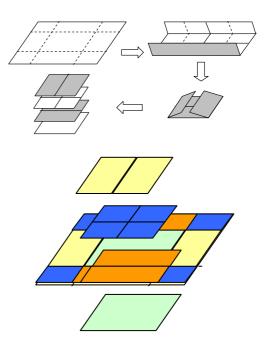
- Local Stacking Transformation
- Transformation through Folding
- Window-based Stacking / Folding

Local Stacking Transformation

◆2D placement on area KA


 For 3D chip with K device layers and each with area A

•Shrink: $(x_i, y_i) \rightarrow (x_i / \sqrt{K}, y_i / \sqrt{K})$


- Tetris-style 3D legalization
 - Cost R = αd + βv + γt
 - Minimize displacement, #via and thermal cost

Transformation through Folding

- Layer assignment and location mapping according to the folded order
 - Folding-2

• Folding-4

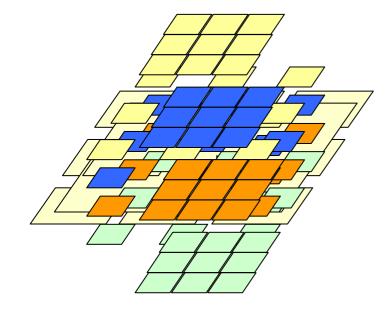
UCLA VLSICAD LAB

Comparison between Stacking and Folding

Stacking

- Tend to optimize 2D wire length
- Result in great number of via

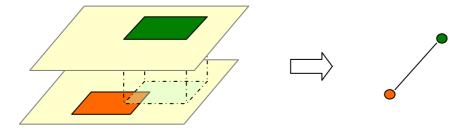
Folding

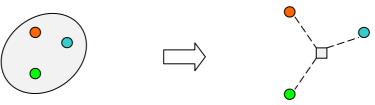

- Tend to avoid over-optimized local nets
- Less optimization in wire length

Trade-off is needed for different manufacturing ability

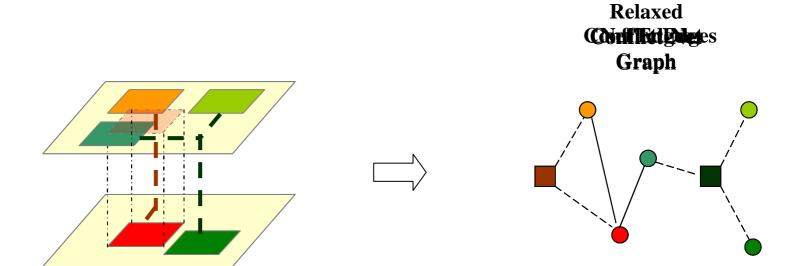
Window-based Stacking / Folding

- Divde 2D placement into NxN windows
- Apply stacking or folding in a window


 Effect of stacking or folding would be spreaded out, and trade-offs are achieved with different N


RCN Graph-based Refinement

Construction of Relaxed Conflict-Net (RCN) graph


- Vertex Set consists of all the cells and nets
- Two types of edges
 - Conflict edge. Cost is imposed if cells are "overlapped"

• Net edge. Cost relates to the layer assignment

RCN Graph Example

RCN Graph-based Refinement

Layer reassignment

- Objective: minimize total cost of RCN graph
- Variables: layer assignment (z)
- Constants: (x,y) location of cells
- ◆ Algorithm [Chang, Cong, IEEE Trans. CAD, 1999]
 - Optimal solution can be achieved if the graph is a tree
 - Induced sub-tree is constructed, and it will cover 40%-50% nodes
 - Iteratively optimize over these sub-trees to achieve good solution on the whole graph

Experiment Setup

- IBMv1 placement benchmark
- ◆ 2D placer mPL 5.0
 - Initial 2D placement
 - Final layer-by-layer legalization and detailed placement

Transformations

- LST (10%) Local Stacking with 10% overlap during refinement
- LST (20%) Local Stacking with 20% overlap during refinement
- Folding-2 Folding-2 Transformation
- Folding-4 Folding-4 Transformation
- 8x8 LST(10%) 8x8 windows and apply LST(10%) on each window
- LST (10%) w/ temp. opt. LST(10%) with temp. cost during legalization

Comparison of different transformations

circuit	2D mPL5	LST (10%)		LST (20%)		Folding-2		Folding-4		8x8 LST (10%)	
		WL	via #	WL	via #	WL	via #	WL	via #	WL	via #
ibm01	5.19E+06	2.52E+06	18519	2.68E+06	14102	4.61E+06	1671	4.55E+06	2476	3.53E+06	6688
ibm03	1.37E+07	6.62E+06	30434	7.29E+06	21406	1.14E+07	4125	1.11E+07	5909	8.36E+06	12318
ibm04	1.67E+07	8.45E+06	37414	9.20E+06	26871	1.55E+07	2940	1.43E+07	6388	1.10E+07	15315
ibm06	2.20E+07	1.10E+07	50139	1.52E+07	32939	2.02E+07	4116	1.83E+07	9077	1.44E+07	19315
ibm07	3.73E+07	1.83E+07	65093	2.07E+07	44715	3.18E+07	5932	3.10E+07	8755	2.37E+07	25021
ibm08	3.94E+07	1.98E+07	70317	2.13E+07	49844	3.48E+07	5801	3.28E+07	10181	2.56E+07	25205
ibm09	3.46E+07	1.72E+07	72787	1.95E+07	50755	3.19E+07	4540	2.93E+07	8257	2.34E+07	23836
ibm13	6.58E+07	3.24E+07	121135	3.60E+07	85103	6.03E+07	7696	5.85E+07	13071	4.50E+07	42568
ibm15	1.65E+08	8.26E+07	246509	9.11E+07	176018	1.45E+08	15128	1.38E+08	23662	1.14E+08	72956
ibm18	2.43E+08	1.26E+08	297771	1.34E+08	208564	2.24E+08	12077	2.08E+08	28287	1.74E+08	83380
Avg.	2.00	1.00	1.00	1.12	0.71	1.78	0.08	1.7	0.14	1.34	0.36

Effect of temperature optimization

	LST, r = 10%,	LST, $r = 10\%$, w/ temp optimization					
circuit	Temp. (°C)	WL	via #	Temp. (°C)			
ibm01	276.5	2.81E+06	19020	159.8			
ibm03	196.7	7.13E+06	31780	121.6			
ibm04	159.6	9.11E+06	40219	96.0			
ibm06	160.4	1.23E+07	50576	103.5			
ibm07	107.5	2.01E+07	69111	66.4			
ibm08	97.7	2.05E+07	75397	63.2			
ibm09	96.1	1.94E+07	78102	60.6			
ibm13	249.3	3.47E+07	127520	156.2			
ibm15	136.5	8.58E+07	260681	90.1			
ibm18	89.4	1.31E+08	332012	58.7			
Avg.	1.0	1.08	1.06	0.63			

Conclusions and Future Work

Our contribution

- A simple but effective heuristic to reuse existing 2D placers
- Trade-offs between wire length and #via
- A general refinement method for 3D placement

Future work

- More folding-like heuristics for arbitrary K layers
- Mix-sized 3D placement
- White space reservation for inter-layer via
- Find out a good measurement for WL & #via

The End Thank you!