

Noise-Direct: A Technique for Power Supply Noise Aware Floorplanning Using Microarchitecture Profiling

Fayez Mohamood*
Michael Healy
Sung Kyu Lim
Hsien-Hsin "Sean" Lee

School of Electrical and Computer Engineering Georgia Institute of Technology AMD, Inc*

Inductive Noise

V

- Power supply noise caused due to high variability in current per unit time
 - $-\Delta V = L(di/dt)$
- Reliability Issue that needs to be guaranteed
 - Typically done through a multi-stage decap placement (motherboard/package/on-die)
- Can be addressed by an over-designed power network, however
 - Leads to high use of multi-stage decap
 - More metal for power grid, leaving less for signals
- Chip is designed to account to a that can induce the worst-case power supply noise

Why Now

- More active devices on chip

Why Now?

- More active devices on chip
 - Higher power consumption
- Exponential increase in current consumption
 - Intel reports 225% increase per unit area per generation
- Device size miniaturization leads to lower operating voltages
 - Lower noise margins
- Aggressive power saving techniques
 - Clock-gating
- Multi-core trend can exacerbate di/dt issues

Source: Intel Technology Journal Volume 09, Issue 04 Nov 9, 2005

Worst-case Design Inefficiency

Inductive Noise Taxonomy

Low – Mid Frequency

High Frequency

Characteristics

- Caused by global transient
- Typically in the 20-100 MHz range
- Does not require instantaneous response

- Mostly due to local transient (clock-gating)
- di/dt effects over 10s of cycles
- Instantaneous response critical

Mitigation

- Low impedance path between power supply and package
- Handled by package/bulk decap
- M. Powell, T.N. Vijaykumar (ISCA'03/'04)
- R. Joseph, Z. Hu, M. Martonosi (HPCA '03/'04)
- K. Hazelwood, D. Brooks (ISLPED '04)

- Low impedance path between cells and power supply nodes
- Handled by on-die decap
- Pant, Pant, Wills, Tiwari (ISLPED '99)
- M. Powell, T.N. Vijaykumar (ISLPED '03)
- F. Mohamood, M. Healy, S. Lim, H.-H. Lee (MICRO-39)
- · and this paper..

di/dt from Microarchitectural Perspective

- Noise characteristics reflect program behavior
 - Static characteristics
 - Functional Unit Usage
 - Location of modules relative to power pin
 - Dynamic characteristics like cache misses
 - E.g. power virus

- Can floorplanning can exploit the above characteristics?
 - Use microarchitectural information to identify "problematic" modules
 - Optimize the floorplan based on benchmark profile information

Exploiting Floorplanning for di/dt

- High frequency di/dt is a function of the chip floorplan
- Factors affecting noise at a module:
 - Frequency and intensity of switching activity
 - Distance between each µarch module and power-pins
 - Proximity to a simultaneously switching module
- Formulating the problem:
 - Quantify fine-grained microarchitectural activity
 - Employ a floorplanning algorithm that optimizes for di/dt
- Result is a floorplan that is inherently noise tolerant (for the average case)

Noise-Direct Design Methodology

- Profile microarchitectural module activity to quantify average-case behavior
- Quantifying metrics:
 - Self-Switching Weight (α)
 - Correlated-Switching Weight (γ)
- Optimized floorplan:
 - Direct modules with high α closer to power-pins
 - Direct module pairs with high γ away from each other

Self-Switching Weight

- Self-Switching Weight (α)
 - Relative likelihood of a module switching at a given time
 - Certain modules gated far more than others
 - For instance, the I\$ is likely to be accessed all the time (except during fetch bottlenecks) → Low α

of switching $\alpha_i = sw_i \bullet I_i$ $\alpha_i = sw_i \bullet I_i$ Intensity (Current consumption)

Correlated Switching Weight

- Correlated-Switching Weight (γ)
 - Relative likelihood of a module pair switching simultaneously at a given time
 - Microarchitecture dependent metric
 - For instance, a VIPT cache would result in an I\$ and I-TLB that are accessed in parallel → High γ

Xi,j: correlated switching for i

$$\gamma_{i,j} = \frac{1}{2} \left(\frac{X_{i,j}}{sw_i} + \frac{X_{j,i}}{sw_j} \right) \bullet \frac{1}{2} (I_i + I_j)$$

Average correlated Intensity

Self- and Correlated-Switching Activity

	LSQ	RUU	втв	L2\$	IRF	L1D\$	ALU0	ALU1	ALU2	ALU3	ALU4	ALU5	L1I\$	Bpred	DTLB	ITLB	FALU0	FALU1	Freg
LSQ	28	0	20	13	20	2	10	10	10	10	10	10	11	20	0	11	10	10	12
RUU		26	8	4	13	2	0	0	0	0	0	0	5	8	2	5	0	0	5
BTB			18	7	29	17	13	13	13	13	13	13	37	100	17	37	13	13	13
L2\$				16	14	28	12	12	12	12	12	12	21	7	26	21	4	4	7
IRF					10	17	7	7	7	7	7	7	23	29	17	23	8	8	24
L1D\$						7	6	6	6	6	6	6	11	17	93	11	5	5	6
ALU0							3	100	100	100	100	100	15	13	6	15	66	66	4
ALU1								3	100	100	100	100	15	13	6	15	66	66	4
ALU2									3	100	100	100	15	13	6	15	66	66	4
ALU3										3	100	100	15	13	6	15	66	66	4
ALU4											3	100	15	13	6	15	66	66	4
ALU5												3	15	13	6	15	66	66	4
L1I\$													3	37	12	100	11	11	5
Bpred														3	17	37	13	13	13
DTLB															2	12	5	5	6
ITLB																1	11	11	5
FALU ₀																	1	100	5
FALU1																		1	5
Freg																			0

+ Power Pin

+ Power Pin

White Net Force

+ Power Pin

Met Force

-> Center Force

+ Power Pin

-vw Net Force

Center Force

---> Density Force

+ Power Pin

Met Force

-> Center Force

---> Density Force

···· Correlation

Force (γ)

+ Power Pin

- Net Force

-> Center Force

---→ Density Force

---- Correlation

Force (γ)

Pin Force (α)x, y directions

+ Power Pin

→ Net Force

-> Center Force

---> Density Force

---- Correlation

Force (γ)

Pin Force (α)x, y directions

Noise (∆V) Analysis Method

Simulated Processor Model

Parameters	Values
Fetch/Decode Width	8-wide
Issue/Commit Width	8-wide
Branch Predictor	Combining 16K-Entry Metatable Bimodal: 16K Entries 2-Level: 14 bit BHR, 16K entry PHT
ВТВ	4-way, 4096 sets
L1 I\$ & D\$	16KB 4-Way 64B Line
I-TLB & D-TLB	128 Entries
L2 Cache	256KB, 8-way, 64B Line
L1/L2 Latency	1 cycle/6 cycles
Main Memory Latency	500 cycles
LSQ Size	64 entries
RUU Size	256 entries

Power Supply Noise

- Most worst-case voltage swings are pushed below margin
- For exceptions, most are still below the threshold (10%), and the remaining are marginal
- Outliers due to
 - Other ALUs (other than alu0) have higher correlation (γ)
 - Dcache does not have high correlation (γ) with others

Noise Tolerance of Microarch Modules

(a) Wire-length Floorplan

Noise > 30 %

Noise 20-30 %

(b) Noise-aware Floorplan

Noise > 10-20 %

Below Noise Margin

Noise Violation Frequency

- Noise margin violations are reduced by more than half
- Illustrates the potential for better performance in presence of a dynamic di/dt control mechanism

Dealing with Worst-Case

- Even with Noise-Direct, worst-case must be guaranteed
- We advocate: Noise Direct + Dynamic di/dt control
 - Details in our paper in MICRO-39, 2006
 - Use decay counters for each module
 - Control simultaneous gating
 - Based on a queue-based controller in each power domain
 - Throttle gating when threshold is exceeded
 - Other synergistic approaches
 - Pre-emptive ALU gating
 - Progressive gating for large modules
 - Based on a queue-based controller in each power domain
 - Throttle gating when threshold is exceeded

Conclusion

- Traditional design methodologies continue to be inefficient
- Inductive noise no longer a design afterthought
- Decaps consume chip real-estate, and contribute to leakage, eroding benefits from clock-gating
- Our research proposes
 - Cooperative physical design and microarchitecture techniques
 - Noise-Direct: Floorplanning for the average-case
 - Guarantee worst case through dynamic di/dt control

Thank you

http://arch.ece.gatech.edu http://www.3D.gatech.edu

