A Technique to Reduce Current and Average Power Dissipation in Scan Designs by Limited Capture

Seongmoon Wang Wenlong Wei NEC Labs., America, Princeton, NJ

Purpose

- Reducing excessive switching activity of deterministic test patterns generated by any ATPG
 - Reduce peak current during capture and shift cycles to safe level
 - Reduce also average power
- Low hardware overhead
- No performance degradation
- No decrease in fault coverage
- Minimizing test sequence length
 - Use highly compacted test patterns

Outline

- Introduction
- Outline of Proposed Scheme
- Reducing Power during Shift Cycles
- Reducing Power during Capture Cycles
- Procedure to Determine Capture Groups
- Experimental Results
- Conclusions and Future Research

Introduction

- Significantly higher switching activity during scan testing causes two main problems
 - High power (heat) dissipation -> damages CUT or hurts reliability of chips
 - Elevates CUT temperature during test application
 - Power dissipation during scan shift cycles dominates
 - High Instantaneous current flow capture cycles -> results in unnecessary loss of yield
 - Vdrop = IR + Ldi/dt
 - Increases delay and even flips flip-flop states

Introduction

- Most previous publications focus on reducing power dissipation (scan shift cycles)
- Previous publications that reduce peak current
 - Sequential capture [Rosinger et al. TCAD 04], [Lee et. al. ATS 04], [Saxena et al. ITC 01]
 - Partition scan chains into sub scan-chains and clock only one sub scan-chain in each phase in sequence
 - Capture violation should be resolved
 - Don't care utilization by ATPG [Wen et al. VTS 05]
 - Assigns don't cares existing in test cubes to minimize peak current during capture cycles
 - Needs a separate technique to reduce scan shift power

Outline of Proposed Scheme

- Reducing switching activity during capture cycles does not reduce switching activity during shift cycles and vice versa
- Different methods used to reduce power during shift cycles and current during capture cycles
 - Shift cycles
 - Utilize don't cares existing in test patterns
 - Adjacent don't care bits are assigned same values
 - Capture cycles
 - Capture only selected scan chains
 - Scan chains that are not selected continue shifting

Outline of Proposed Scheme

- Simply modifies existing test patterns to reduce switching activity without generating test patterns
 - Handle test patterns generated by any ATPG tool
 - No special (dedicated) ATPG tool required
- Minimally intrusive to existing design
 - No need to modify existing scan structure (partitioning into scan sub-chains are not required)
 - No need for special clock trees
 - Multiple scan enable signals and a small register are only addition

Reducing Power during Shift Cycles

Don't care are assigned to reduce power during shift cycles [Wang & Gupta DAC 97]

don't cares are flanked by the same binary values

fill don't cares with the same binary value

don't cares are flanked by opposite binary values

randomly choose 1/0 boundary

Reducing Power during Shift Cycles

- Need many don't cares (X's) to achieve enough power reduction during shift cycles
 - Overspecified bits are relaxed [Wang et al. ITC 05]
- If highly compacted test set used, some patterns do not have enough don't cares even after relaxations
 - Static compaction merges several compatible test patterns into one test pattern
 - Increase specified bits (decrease X's)
 - Reverse compaction can increase X's at the expense of larger test data volume and longer test application time

Reducing Power during Shift Cycles

- Reverse compaction
 - Partition a densely specified test pattern into multiple test patterns that have enough don't cares
 - Overlaps between specified bits of new patterns should be minimized
 - Specified bits should be evenly divided into new patterns
 - All faults that are detected by original patterns should be detected by the divided patterns

Reducing Power during Capture Cycles

- In each capture cycle, only selected scan chains capture
 - Other scan chains continue shifting test patterns that are modified to reduce transitions
 - Since only 2 scan chains capture, overall switching activity is reduced
 - Only 2 scan chains shift out responses and other scan chains scan out test patterns that cause fewer transitions

Reducing Power during Capture Cycles

Proposed scan architecture

Only group2 and group4 capture responses

Reducing Power during Capture Cycles

- Determine control register value (groups to capture) for each pattern
 - If there are G groups and maximum C groups can capture safely, C bits in the control register are set to 0
 - There are $\begin{pmatrix} G \\ C \end{pmatrix}$ different combinations to choose
- Since only C < G groups capture responses</p>
 - Fault coverage may decrease
 - But, carefully selecting C capture groups can minimize or eliminate decrease in fault coverage

 Computed detection counts (# of patterns that detect each fault by *n*-detection fault simulation

- Tries to find C(=2) capture groups that detect all single detection faults of the test pattern
 - None-single detection faults can be detected by other patterns

Capturing group1 & group2 can detect all single detection faults of pattern *ta*

 $Fa = \{ f1, f2, f3, f4, f5, f6, f7, f8, f9 \}$ $dc_j \quad 1 \quad 3 \quad 1 \quad 2 \quad 1 \quad 2 \quad 1 \quad 7 \quad 3$

- Detecting all single detection faults by capturing C groups is not possible for some test patterns
 - Select more than C groups to detect all single detection faults if it does not exceeds peak current limit

No C groups can detect all single detection faults, but detecting one more can do

- If capturing more than C groups exceeds peak limit
 - Select 2C groups
 - Apply the same pattern twice and capture different C groups in each application
- If selecting 2C groups still cannot detect all single detection faults
 - Select more than 2C groups to detect all single detection faults and see if it exceeds current limit
 - If it exceeds peak current, select 3*C* groups
 - Apply the pattern 3 times capturing different C groups in each application

Experimental Results

Peak transition count (all test cycles)

Experimental Results

Experimental Results

% Reduction in average no. of transitions

Experimental Results (Industrial Designs)

Red. peak transition % ______ count (capture cycles)

Conclusions and Future Research

- Significantly reduces power dissipation and peak current
 - Peak current during capture cycles reduce by average 30% for ISCAS, even larger for industrial designs
 - 36-46% reduction in peak current during entire test cycles
 - 56-85% reduction in average number of transitions
- No decrease in fault coverage
- The proposed technique modifies test patterns generated by any ATPG
 - Flexibility
- No capture violation

Conclusions and Future Research

- Low hardware overhead
 - One small register
- Minimally intrusive
 - Need not change clock tree or scan chain architecture
- Extension to delay testing (Future work)
 - Scan delay test session is divided into several subsession in which only one clock domain is tested
 - Scan chains that belong to other clock domains need not capture responses
 - The proposed method naturally fits to this environment!