A Wafer-Level Defect Screening Technique to Reduce Test and Packaging Costs for "Big-D/Small-A" Mixed-Signal SoCs

Sudarshan Bahukudumbi, Sule Ozev, Krishnendu Chakrabarty, Vikram Iyengar[§]

Department of Electrical and Computer Engineering, Duke University §IBM Microelectronics, Essex Junction, VT

Duke University

Outline

- Introduction
- Motivation: Wafer-level, mixed-signal defect screening
 - Challenges
- Wafer-level defect screening
 - Correlation based signature analysis techniques
- Cost Model
 - Cost components
 - Analysis framework
 - Results
- Experimental Results
- Conclusions

"Big-D Small-A" SoC

Introduction

- Increasing popularity due to importance in consumer electronics market
- Fraction of die area comprising of analog/mixed-signal ~10%
- Typical "Big-D Small-A" SoC components:
 - Pair of complementary data converters
 - Large portion of digital logic
 - Phased Locked Loop (PLL)

"Big-D Small-A" SoC

Example

• Typical *"Big-D small-A"* mixed-signal SoC^[*]: DragonBall*TM*-MX1 (ARM-core-based Motorola IC)

• Fraction of die area comprising of analog/mixed-signal: 10%

- 7% Sigma-Delta data converters and 3% PLL

^[*] G. Bao, "Challenges in Low Cost Test Approach for ARM9TM Core Based Mixed-Signal SoC DragonBallTM-MX1", Proc. Of the Intl. Test Conference, 2003

Motivation: Wafer-Level Defect Screening

- Packaging: significant contributor to product cost
- Wafer-level testing \Rightarrow early defect screening
 - Results in lower packaging cost
- Packaging cost proportional to number of pins in the die
- Current packaging cost per pin exceed the cost of silicon per sq-mm ^[*]
- Increasing packaging cost highlight the need to reduce the cost by effective screening at wafer level

^[*] A. B. Kahng, "The Road Ahead: The Significance of Packaging", IEEE Design & Test, Nov. 2002

Motivation: Wafer-Level Defect Screening

- Packaging: significant contributor to product cost
- Wafer-level testing \Rightarrow early defect screening
 - Results in lower packaging cost

• Packaging cost proportional number of pins in the die

- Current packaging cost per pin exceed the cost of silicon per sq-mm [*]
 - ITRS 2005: Current Packaging Cost 0.26 2.34 ¢/pin
- Maximum pin/die : 140-990

^[*] A. B. Kahng, "The Road Ahead: The Significance of Packaging", IEEE Design & Test, Nov. 2002

Motivation: Wafer-Level Defect Screening

- Packaging: significant contributor to product cost
- Wafer-level testing \Rightarrow early defect screening
 - Results in lower packaging cost
- Packaging cost proportional to number of pins in the die
- Current packaging cost per pin exceed the cost of silicon per sq-mm ^[*]
- Increasing packaging cost highlight the need to reduce the cost by effective screening at wafer level

^[*] A. B. Kahng, "The Road Ahead: The Significance of Packaging", IEEE Design & Test, Nov. 2002

Challenges: Wafer-Level Mixed-Signal Test

Challenges

• Measurement inaccuracies: analog cores tested in a DSP based mixed-signal test environment

- The problem is further aggravated:
 - Noisy DC power supply lines
 - Improper grounding of the wafer probe
 - Improper noise shielding of the wafer probe station
- Test and characterization extremely difficult
- Leads to high yield loss (undesirable)

Challenges: Wafer-Level Mixed-Signal Test

Wafer-level defect screening- mixed-signal

• Test methods for analog circuits using low cost digital testers exist

- Explicit measurements of static and dynamic parameters
- Wafer-level test environment: yield loss due to inaccurate measurements
- Use of a mixed-signal ATE: nullify the cost savings due to packaging
- Need for a robust defect screening technique using digital testers for mixed-signal SoCs at the wafer-level

Mixed-Signal Test Data Path

• Digitally compliant mixed-signal test data path in an example SoC

Signature Analysis Based Defect Screening

Signature Analysis

Output response of the circuit compared with a *"pre-determined"* acceptable signature: make a pass/fail decision

Signature Analysis Based Defect Screening

- Acceptable signature: *hard to derive at wafer-sort*
- Defect screening based on outlier analysis
 - Extensively used for testing digital circuits based on IDDQ tests
 - Signature in the form of supply current information
- Spectral based testing
 - Signature spread over multiple data points constituting the spectrum
- Signature analysis technique necessary to encode this information into a single parameter for each core

Signature Analysis

Method 1: Mean Signature Based Correlation (MSBC)

MSBC

Sensitivities to the change in shape of the spectrum from the Eigen Signature determined using correlation parameter

• Eigen signature: *not pre-determined*

Spectrum: Acquisition

The characteristic spectrum (X_i) of the i^{th} core (in a batch of m cores) under test \rightarrow obtained using a P-point FFT and represented as:

 $X_i = \{x_{i1}, x_{i2}, \dots, x_{iP}\}, \quad \forall i, 1 \le i \le m$

Determine: Eigen Signature

2

Eigen Signature E \rightarrow set of averages of the spectra of *m* identical cores:

$$E = \begin{cases} \frac{\sum\limits_{i=1}^{m} x_{i1}}{m}, \frac{\sum\limits_{i=1}^{m} x_{i2}}{m}, \dots, \frac{\sum x_{iP}}{m} \end{cases}$$

Correlation

Correlation between the Eigen spectrum (E) and the spectrum of the core under test (X_i) can be defined as:

$$\operatorname{corr}(X_{i}, E) = \frac{\sum_{j=1}^{P} (x_{ij} - \overline{X}_{i})(\frac{\sum_{i=1}^{m} x_{ij}}{m} - \overline{E})}{[\sum_{j=1}^{P} (x_{ij} - \overline{X}_{i})^{2} \sum_{j=1}^{P} (\frac{\sum_{i=1}^{m} x_{ij}}{m} - \overline{E})^{2}]^{1/2}}$$

Decision (Pass/Fail)

- Characterization data \rightarrow Information on expected yield ($Y_{\%}$)
- Modular Testing \rightarrow Statistical binning \rightarrow information on expected yield per module
- Information used to make a pass/fail decision on the batch of *m* dies

Method 2: Golden Signature Based Correlation (GSBC)

GSBC

Sensitivities to change in shape of the spectrum from the Eigen Signature determined using correlation parameterEigen signature: *pre-determined*

Test Flow: GSBC

Determine: Eigen Signature

• A golden-signature spectrum is obtained a priori, by assuming ideal and

- fault-free operating conditions for the circuit under test.
- Pre-determined *golden signature* used as Eigen signature

Spectrum: Acquisition

The characteristic spectrum (X_i) of the i^{th} core (in a batch of m cores) under test \rightarrow obtained using a P-point FFT and represented as:

 $X_i = \{x_{i1}, x_{i2}, \dots, x_{iP}\}, \quad \forall i, 1 \le i \le m$

Correlation

Correlation parameter between the Eigen spectrum (E) and the spectrum of the core under test (X_i) obtained

Decision (Pass/Fail)

- Characterization data: Information on expected yield ($Y_{\%}$)
- Modular Testing & Statistical binning \Rightarrow information on expected yield per module
- Information used to make a pass/fail decision on the batch of *m* dies

Fault Injection

- Failure Type: Hard and Soft failures
- Hard failures: modeled randomly as resistive opens and broken lines in the comparator n/w
- Soft failures: modeled by varying the standard deviation of resistor values and offset voltages: randomly inject soft faults

Test: a

• Determine: correlation parameter for each unique data converter

- 1024 and 4096 point FFT
- Determine the number of circuits that pass the test
- Determine the number of circuits that fail the test

Experimental Results: MSBC

Experimental Results: MSBC

• Significant percentage of marginal failures result in test escapes

• 33-92% of the moderate fails are detected

Experimental Results: GSBC Gross Failures: Negligible/zero test escape rate Implies most gross failures easily detected Test Escapes: Marginal Failures Test Escapes: Gross Failures

Experimental Results: GSBC

- Significant percentage of marginal failures result in test escapes
- 26-92% of the moderate fails are detected

Cost Model: Purpose

- Evaluate effectiveness of wafer-level testing
- Quantify impact on cost

Correction Factors

- Test Escape
 - At wafer level impacts packaging cost
 - Test Escape (analog cores): β
 - Test Escape (digital cores): θ_{n^*}
 - SoC Test Escape: $1 (1 \theta_*) \cdot (1 \beta)$

- Yield Loss is undesirable \Rightarrow Increased cost
- Wafer Yield Loss (analog cores): WYL_a
- Wafer Yield Loss (digital cores): WYL_d
- SoC Test Escape: $1 (1 WYL_d) \cdot (1 WYL_a)$

Cost Components

Cost Saving

Analysis Framework

- Mixed-Signal SoC consists of:
 - Flattened section of digital logic \rightarrow industrial ASIC K
 - Pair of identical data converters \rightarrow identical bit resolution
- Packaging cost : derived from published data ^[*], varied with size of die
- Three typical die sizes considered (10,40,120) mm²
- Cost of silicon : \$0.1 / mm^{2[*]}

[*] International Technology Roadmap for Semiconductors: Assembly and Packaging, 2005

[*] http://www.mosis.org

^[*] A. B. Kahng, "The Road Ahead: The Significance of Packaging", IEEE Design & Test, Nov. 2002

Quantitative Analysis

- Tester Cost : \$0.30/sec
- ASIC Chip K : Tested with 4046 test patterns
- 50% of test escapes are due to mixed-signal cores
- Yield Distribution : Adjusted to die size

Quantitative Analysis

Quantitative Analysis

Conclusions

- Wafer-level defect screening technique suited for commercial "Big-D Small-A" mixed-signal SoCs
 - Using low cost digital tester
 - Significant percentage of moderate (26-92%) and gross failures (45-100%) can be screened at the wafer-level maintaining yield loss to a minimum (~1%)
- Cost model for a generic mixed-signal SoC
 - Benefits of wafer-level tests illustrated