System Co-Design and Co-Analysis Approach to Implementing the XDR[™] Memory System of the Cell Broadband Engine[™] Processor

Realizing 3.2 Gbps Data Rate per Memory Lane in Low Cost, High Volume Production

Wai-Yeung Yip, Scott Best, Wendem Beyene, Ralf Schmitt Rambus Inc Los Altos, CA, USA

Agenda

Motivation

- PLAYSTATION[®]3 (PS3[™]) Memory System
- XIO (XDR[™] I/O) Clock Generation
- Power Distribution System Design & Analysis
- Designing for Low Cost Manufacturing Tolerances
- Summary

* PLAYSTATION and PS3 are trademarks of Sony Computer Entertainment Inc.

Motivation

- The Cell Broadband Engine[™] (Cell B.E.), designed for PS3, must be manufacturable at low cost and in high volume
- High speed interfaces have little margin to give
 - Bit time of the Cell B.E. XDR memory system is only 312.5 ps
 - Traditional system design and analysis approach may not have worked in implementing such a system costeffectively

* Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc.

Traditional Design/Analysis Approach

- Components may be designed and optimized independent of each other
 - Components may be designed by teams across multiple companies, at different design stages
 - Silicon may be designed independent of package & PCB
 - DRAM may be designed independent of memory controller physical layer (PHY)

System Co-Design/Co-Analysis Approach

- Different components of the XDR memory system were designed and analyzed simultaneously
 - Including XIO, DRAM device, clock chip, packages, and PCB
 - System level analysis and optimization performed taking into consideration interactions between components before the design of any component was finalized

Merits of Co-Design/Co-Analysis Approach

- Allows best trade-off between system cost & performance
- Uncovers potential power integrity and signal integrity issues at system level early in the design cycle
 - Allows resolution of such issues with a combination of architectural, circuit, package, & PCB improvements
 - Results in solutions with the lowest system cost

PS3 Memory System Block Diagram

ASP-DAC 2007

XIO Clock Generation Circuit

ASP-DAC 2007

XIO Clock Generation Circuit Features

- Both TX (write) and RX (read) mixers for precision phase control were implemented in the XIO
 - No phase mixers in the DRAM to keep its cost low
- Each DQ (data) bit has its own independent controls
 - Data-to-data PCB trace length matching not required resulting in simpler PCB layout in smaller area

Power Distribution System Design/Analysis

- Power Integrity considered from start of design process
- Power Integrity analyzed at system level
 - Every component of the power distribution system included in the model
 - Explored different trade-offs to arrive at most costeffective power distribution system design

Optimally Accurate Analysis Approach

- Power distribution system consists of multiple components: VRM, PCB, package, chip
- Relative significance of a component in power integrity depends on the noise frequency
- Performed separate power integrity analyses, one for each frequency range
- In each frequency range, simplified models of components whose contribution to power supply noise is relatively small

Power Integrity Analyses

On-chip IR drop analysis

- Voltage drop due to resistance of on-chip wires
- Package & PCB models removed due to relatively low resistance
- High-frequency noise analysis
 - Voltage noise due to high frequency switching of core & I/O
 - Package & PCB models simplified to an inductor
- Medium-frequency noise analysis
 - Voltage noise due to medium frequency switching of core & I/O
 - On-chip power distribution and decoupling capacitor model simplified to a lumped RC network

Power Distribution System Components

Note: PDN = Power distribution network VRM = Voltage Regulator Module

ASP-DAC 2007

Power Integrity Trade-off Analysis

- Resonance peak in medium frequency can be lowered in two different ways
 - Convert from 4 to 6-layer PCB, or
 - Double amount of on-chip capacitance
- Choose solution with a lower system cost

Low Cost Manufacturing Tolerances

- Design parameters allowed to vary from their nominal values within tolerances to minimize manufacturing costs
 - PCB impedance allowed to vary by $\pm 15\%$
 - Package impedance allowed to vary by $\pm 20\%$
- Such parameter variations result in variations in voltage and timing margins
- Signal integrity analysis to quantify such variations can be computationally expensive

Statistical Analysis Methods

- Statistical signal integrity analysis methods explored to find an accurate approach with low computational cost
- Taguchi-based method
 - Uses an orthogonal array to minimize amount of simulations needed to explore design space
 - Generates accurate voltage & timing margin distributions
 - Provides insight into parameter sensitivities

Orthogonal Arrays

- An orthogonal array consists of columns which are mutually orthogonal
- For any pair of columns, all combinations of factor levels occur an equal number of times

	Factor 1	Factor 2	Factor 3
Simulation 1	L	L	L
Simulation 2	L	н	н
Simulation 3	н	L	Н
Simulation 4	н	н	L

ASP-DAC 2007

Comparison of Statistical Methods

 Taguchi-based method yields similar distribution as Monte Carlo at a much lower computational cost

Eye Height Statistics	Monte Carlo	Taguchi Based
Mean	0.341	0.334
Std. Deviation	0.038	0.036
Kurtosis	-0.473	-0.583
Skewness	0.187	-0.043
Minimum	0.244	0.237
Maximum	0.456	0.434
# of Simulations	5000	27
Simulation Time (hours)	210	1

ASP-DAC 2007

Factor Effects Plots

Taguchi-based method yields factor effects plots

- Reveal sensitivity of system performance to individual design parameters
- Facilitate design trade-off to optimize performance at low overall system cost

ASP-DAC 2007

Summary

- System Co-Design & Co-Analysis approach applied to the implementation of the XDR memory system of the Cell B.E. processor
 - Allowed best trade-off between system cost and performance
- Precision phase control circuits implemented in the XIO to lower cost of DRAM and PCB design
- Optimally accurate approach applied to system-level power integrity analysis at low computational cost
- Taguchi-based statistical approach quantified signal integrity variations resulting from manufacturing tolerances at low computational cost