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Introduction
• Dynamic Power Management (DPM) : Turning off unused

components
• Common DPM approaches

• Timeout
– Switches off after idling for a while
– Switches ON at the arrival of an event
– Cons:
      Energy waste due to idling,
      Performance loss due to transition overhead

• Predictive, stochastic
[Benini00,Chung99, Hwang97, Irani03]

– Predicts the length of idle times based on history

• Implementation
• Requires additional software and hardware PE
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DPM for systems

• DPM is costly to implement at system level

• Not all components can handle their own DPM
Example: analog elements
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DPM for a real-time system
• A real-time system

• External event come periodically
• External events

trigger internal events

• Application information can be used to avoid component-level DPM

• Our DPM: Application-based Power Management (APM)
• Exploits application and system info to predict idle durations
• Is a centralized approach => Low-cost implementation

• Contributions of this paper:
• Systematically modeling real-time systems for centralized DPM
• Developing the power manager kernel
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Outline

• Software architecture of APM
• Modeling a real-time system and its services
• Our DPM algorithm
• Experimental Results

• APM implementation for a Software-Defined Radio (SDR)
system
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Services and Requests
• Service

• Defines a high-level behavior of the system
• Modeled by a set of tasks, their timing and their dependencies
• example:

– System: An MPEG decoder system
– Services: corresponding to each supported resolution, a service is defined

• A system runs a finite set of services (known at design time)
• Request

• Defines properties of external events
– Period: e.g. frame per second
– Deadline: may be the same as period
– Service type

• The external events are determined at runtime based on user
decisions or environmental changes

• Multiple requests may be processed simultaneously

Static info

Dynamic info
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Software architecture of APM

• System Coordinator
• Translates high-level application decisions to requests
• Used API: Register/Terminate a request

• Schedule Analyzer:
• Simulates system schedule for registered requests
• Extracts idle durations and power commands
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Modeling system and services
• Properties of our model

• Is based on Communicating Sequential Processes (CSP)
• Extension: functionality is abstracted by black-box tasks

• Modeling a system
• Resources
• Processes
• Event buffers

(abstracts memories, queues, …)

• Modeling services
• Using task graphs

n1

n2

n3

n4

Process1GPP…n4
Process4IP2…n3
Process3IP1…n2
Process1GPP…n1
ProcessResourceExecution DelayTask

IP2IP1

Process
3

B3

Process
1

B1

Process
2

B2

Process
4

B4

GPP

Scheduling Alg.

service1 service2

n5 n6



Gorjiara, Bagherzadeh, Chou, ASPDAC-2007 9

APM algorithm
• Uses timing information of services

• Uses a discrete event simulator
• Computes system schedule for the registered requests
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Schedule deviation
• The real schedule may deviate from the computed schedule

due to
• Variation in execution delay of tasks
• Jitter in arrival of external events

• Solution: a safety margin is added to the computed schedule
• Margin must be tuned for a given system
• Has some energy penalty
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Case Study
• A software-defined radio system

• Used to control and monitor a UAV airplane
• Has four channels, 23 components (analog and digital)
• Our power manager runs on System Manager processor
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SDR services: unencrypted send
• The receive is the reverse

Service: Unencrypted Send, Channel 1
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SDR services: encrypted send
• For each channel

• Two send
• Two receive

• Total services: 16
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DPM and event loss
• The real schedule may deviate from the computed schedule

due to
• Variation in execution delay of tasks
• Jitter in arrival of external events

• In SDR, this causes event loss if shutdown while processing
a message
• All the wireless devices can tolerate some loss
• In our application up to 1% message loss is acceptable

• Safety margins are added to the computed schedule to
reduce the loss
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Experiment setup
• Simulation environment

• Developed to study different aspects of the system
– Different jitter and safety margin values are used
– Event loss is captured

• Is modeled in SystemC
• Uses state-based power estimation [Bergamaschi03]
• Three variations:

– Without DPM
– With ideal DPM
– With APM

• Testbench
• Actual communication profile of SDR during a 10-hour mission
• 300,000 messages
• Rate and type of messages varies at runtime

• Hardware implementation
• Our DPM is added to the SDR system
• Power is measured and compared to simulation model
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Results
• Energy consumption

• No DPM:  7.29MJ
• Ideal DPM: 0.95MJ  => 88% savings
• APM: varies for different safety margins
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Results
• Energy consumption

• No DPM:  7.29MJ
• Ideal DPM: 0.95MJ  => 88%

savings
• APM: varies for different

safety margins
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Results summary
• The minimum safety margin corresponding to the jitter

values

• Hardware measurements
• Safety margin = 140ms
• Savings = 68%
• Simulation error: 5%
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Runtime overhead of APM
• APM runs on System Manager PE (PowerPC 500MHz, 256MB

RAM, 16W)
• Total APM processing time

• 9 mins for a 10-hour mission
• On average, for every 80 seconds of the mission, one second

of DPM computation
• Energy consumption of APM

• 8.6KJ
• Very low energy consumption
(1% of the energy consumption of the system with APM)
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Conclusion
• Application-based power management (APM)

• Is a low-cost centralized DPM
• Targets real-time systems
• Anticipates idle durations using high-level system modeling

and simulation
• Reacts to application changes quickly
• Accounts for event jitter and task delay variation
• Achieved 60-87% energy savings for SDR


