
Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Program Phase Directed Dynamic Cache Way
Reconfiguration for Power Efficiency

Subhasis Banerjee1 G. Surendra2 S. K. Nandy2

1Sun Microsystems
Bangalore - INDIA

2CAD Lab, SERC
Indian Institute of Science

Bangalore - INDIA

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Outline

1 Exploitiong Runtime Program Behavior

Motivation

Program Phases

2 Program Phase Directed Cache Reconfiguration

Hardware Phase Detector

Way Selection using Phase Information

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Outline

1 Exploitiong Runtime Program Behavior

Motivation

Program Phases

2 Program Phase Directed Cache Reconfiguration

Hardware Phase Detector

Way Selection using Phase Information

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Motivation

Power density in high performance microprocessor has doubled in every

three years [Borkar(Jul-Aug 1999)]

Conventional circuit level power management techniques do not address

issues related to dynamic power

Need to address power issues at program runtime

Runtime behavior studied most effectively in architecture level

Microarchitecture level power estimation is faster and the accuracy is

90% compared with circuit level technique

Solution: Power Aware and Application Aware Micro-architecture

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Power and Application Aware Microarchitecture

Advantages:
Ability to estimate power consumption at early stage of design
Important to study performance-power trade-off quickly
Explore opportunities to save power via micro-architecture optimization –
clock gating, dynamic adaptation
Visibility to program runtime: program behavior← adaptive
micro-architecture

Disadvantages:
No direct solution to static power dissipation
Accuracy is always an issue

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Aim of the Study

Architecture level exploration of program behavior in terms of program

phase

Characterization of program phases using cache conflict miss

Reconfigurable cache architecture using program phase information

Incorporate demand driven policy to allocate cache resources at

program runtime

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Outline

1 Exploitiong Runtime Program Behavior

Motivation

Program Phases

2 Program Phase Directed Cache Reconfiguration

Hardware Phase Detector

Way Selection using Phase Information

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Program Behavior

Definition: Program phase is the observable phenomena that reflects

program behavior

Microarchitecture optimizations, in general, depend on program behavior

Well known program behavior:
temporal and spatial locality
value locality
program predictability

Caches and branch predictors rely on program behavior for performance

improvement

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Program Behavior (contd.)

0 200 400 600 800 1000 1200
0

0.5

1

N
or

m
. p

ow
er

0 200 400 600 800 1000 1200
0

5

10

D
−

L1
 m

is
s

(%
)

0 200 400 600 800 1000 1200
0

2

4

IP
C

Interval −− each point represents 5M instructions

IPC, L1 data cache miss and normalized power averaged over interval of

5 million instructions are shown for gcc

It is observed that all the metric show a repetitive phased behavior

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Program Behavior – Observation

It is sufficient to observe program behavior at a granularity of million

instructions

[Duesterwald et al.(2003)Duesterwald, Cascaval, and Dwarkadas]

Although different program metrics change differently with time, the

periodicity in the behavior is the same

Once program enters in a particular “program phase”, it remains in that

phase for some time =⇒ program locality

It is observed that the majority of programs are control dependent i.e,

the program behavior depends on the control transfer behavior of

dynamic instruction stream [Sazeides and Smith(1998)]

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Motivation
Program Phases

Simulation Environment

Parameter value

Fetch queue size 8 instructions

RUU Size 64 instructions

LSQ Size 32 instructions

Fetch width 4 instructions/cycle

Decode width 4 instr/cycle

Issue width 4 instr/cycle

Commit width 4 instr/cycle (in-order)

Functional Units 4 int ALU
1 int mult/div
2 mem ports

Branch Predictor Bimodal 2K table
2-Level – (gshare) 1K table, 10 bit
combined – bimodal and gshare
history – 1K chooser, 4 cycles penalty

BTB 2048 entry, 4-way

Return address stack 16-entry

L1 data cache 64k 4-way, LRU
32B block, 1 cycle latency

L1 instruction cache 64K, 2-way, LRU
32B block, 1 cycle latency

L2 cache Unified, 1M, 4-way, LRU
32B block, 15 cycle latency

Memory 100 cycle first chunk latency
2 cycles subsequently

TLB 128 entry itlb, 128 entry dtlb,
4-way, 30 cycle miss latency

Wattch simulator build on
SimpleScalar – cycle accurate
superscalar simulator

Incorporated modules from
HotLeakage – to estimate
leakage current

.13µm process technology
parameters with 1.7 GHz clock
frequency

Benchmarks→ SPEC-2000

CPU benchmarks with reduced

MinneSPEC input and

MEDIABENCH

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Outline

1 Exploitiong Runtime Program Behavior

Motivation

Program Phases

2 Program Phase Directed Cache Reconfiguration

Hardware Phase Detector

Way Selection using Phase Information

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Hardware Phase Detector using Basic Block

of Instruction

Counter

Footprints

Phase ID

Branch
Hash

+

A phase detector based on basic block count at runtime is proposed in

[Sherwood et al.(2003)Sherwood, Sair, and Calder]

Disadvantage→ The basic blocks are randomly chosen by the hash

function, inconsistent phase information in different run

Lossy technique. Aliasing effect from different basic block

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Phase Detector

H

8 bit

+

PHASE ID

LD/ST ADDR.

PHASE HISTORY TABLE

TAG ACCUMULATOR

Our phase detector uses

cache conflict miss

information to form a vector

Each cache set contains one

tag-counter pair. Tag stores

the last 8 bit of most recently

evicted tag

The conflict miss is recorded

if the tag of recent miss

matches with the tag of the

corresponding set

The interval during which the

Miss Vector is accumulated is

2 million instructions

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Phase Detection Algorithm

get mc_vector [m]; {mc_vector [m] is a vector
obtained in an interval m}
min = BIGNUM;

for all i = 1 to m − 1 do
dist=distance(mc_vector [i], mc_vector [m]);
if dist ≤ min then

min = dist ;
index = i;

end if
end for
if min ≤ threshold then

update(mc_vector [index], mc_vector [m]);

else
add_new_mct_entry(mc_vector [m]);

end if

threshold = 1.1

Vectors are normalized

4 most significant bits are

stored for each element of

the vector

For a cache having S

sets, we need to store 4S

bits per phase. 8 phases

are stored in the table.

The size of phase history

table (PHT) is 4S bytes.

for 512 sets, the size of

the PHT = 4 × 512 = 2kB

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Number of Clusters with Different Threshold

 0

 5

 10

 15

 20

1.91.81.71.61.51.41.31.21.11.0.9.8.7.6.5.4.3.2

N
um

be
r

of
 c

lu
st

er

threshold

gzip
bzip2
crafty

gcc
mcf

parser
perlbmk

twolf
vpr

vortex

 0

 5

 10

 15

 20

1.91.81.71.61.51.41.31.21.11.0.9.8.7.6.5.4.3.2

N
um

be
r

of
 c

lu
st

er

threshold

ammp
applu

art
equake
facerec
galgel
mesa

mgrid
swim

 0

 5

 10

 15

 20

1.91.81.71.61.51.41.31.21.11.0.9.8.7.6.5.4.3.2

N
um

be
r

of
 c

lu
st

er

threshold

mpeg2enc
mpeg2dec

cjpeg
djpeg
lame

caudio
daudio

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Outline

1 Exploitiong Runtime Program Behavior

Motivation

Program Phases

2 Program Phase Directed Cache Reconfiguration

Hardware Phase Detector

Way Selection using Phase Information

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Cache Reconfiguration

DECODER

Word Line

Bit line

DATA ARRAYTAG ARRAY

Sense AMP

MUXCOL

MUX DRIVER

. .
 .

. .

.

. .
 .

. .

DATA OUTPUT

ADDRESS
INPUT

VALID OUTPUT

COMPARATORS

OUTPUT DRIVERS

Basic Cache Architecture

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Wordline and Bitline Segmentation: Optimal N Parameter

DRIVER

SENSE AMP

SENSE AMP SENSE AMP

WORD LINE
DRIVER

WORD LINE

Associativity = 2
Block Size

Ndwl = 1

#of Subarray = 1

Ndwl = 2

of Subarray = 2

WORD LINE PARTITION

WORD LINE
B

IT
 L

IN
E

B
IT

 L
IN

E

B
IT

 L
IN

E

Wordline and Bitline Segmentation

Size Assoc. Ndwl Ndbl Nspd Ntwl Ntbl Ntspd

32 KB 1 1 4 1 1 4 4

32 KB 2 8 1 4 1 4 2

32 KB 4 8 1 2 1 4 1

64 KB 1 4 1 4 1 2 8

64 KB 2 8 1 4 1 4 4

64 KB 4 8 1 2 1 4 2

Ndwl ⇒ # of wordline segments ≥

associativity

Each way therefore spans into a

number of wordline segment

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Cache Way Reconfiguration

D
ec

od
er

Cache Controller

Tag

array

way0

Data
array

way1

Data
array

Tag Index

Miss−Rate
Counterfrom cache controller

Phase
Detector

MUX

Data

Way3Way2

Way select signal

Precharge

Precharge Precharge

Sense amp

Sense amp

Comparator

Sense amp

D
ec

od
er

D
ec

od
er

Reconfigurable cache organization

Cache controller

keeps track of the

program phases

detected by the

phase detector

Cache ways are

enabled/disabled

(if needed) using

a way selection

algorithm at the

end of every

interval of 2

Million instructions

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Cache Way Selection Algorithm

if (STATE == STABLE) then
if ((present_miss − recorded_miss) <

miss_noise) then
miss_noise− = noise_dcr ;
update_state();

else
shutdown_one_way_of_Cache;

update_state();

STATE = UNSTABLE ;

end if
end if
if (STATE == UNSTABLE) then

if (miss_rate > threshold) and
(available_ways ! = 0) then

enable_one_more_way ;

update_state();

else
state = STABLE ;

update_state();

miss_noise = base_noise;

end if

end if

The algorithm finds a suitable
configuration at the end of every
interval

Every new phase starts with
UNSTABLE state

If miss_rate is within limit
STABLE state is assigned

To avoid frequent configuration a
base_noise is set

SPEC INT/FP MEDIA

threshold 3% 2%
base_noise 4000 3000
noise_dcr 200 100

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Effect of Disabling Cache Ways

Data consistency should be maintained while valid data are residing in

disabled way

Three methods are studied:
All data in the disabled way are flushed⇒ simplest but significant
performance loss
A fill buffer approach to move data from disabled to enabled way.
Modification is required in the datapath to move data from disabled to
enabled way
An accessed block in a disabled way is stored in a 4 entry fully associative
victim buffer

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Fill Buffer Approach and Victim Buffer for Data Consistency

Enabled Enabled

Way Way
Enabled

Way

Disbled

Way

To L2 Cache

To CPU

MUX

MUX

Buffer

Enabled
Way

Enabled

Way

Enabled

Way

Disbled

Way

MUX
Address from CPU

Victim Buffer

To L2 Cache

To CPU

Figure: (i)Fill buffer approach, (ii) Victim
buffer

Fill buffer approach: Data

transferred to enabled

way takes 8 cycles

A request for a data in

disabled way is moved to

the victim buffer

Eviction from the victim

buffer writes data back to

L2 cache

Victim buffer has a 4 entry

fully associative structure,

more energy dissipation

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

We incorporate victim

buffer approach

More than 75% of the

accesses in the disabled

ways are serviced by the

victim buffer

It avoids frequent

activation of precharge

and sense amplifier logic

of the disabled way

Every hit to victim buffer

saves 7 cycles penalty

compared to fill buffer

approach

 50

 60

 70

 80

 90

 100

vprvortex twolfperlbmkparser mcf gcccraftygzip bzip2

P
er

ce
nt

ag
e SPEC-INT

 50

 60

 70

 80

 90

 100

swimmgridmesagalgelfacerecequakeartappluammp

P
er

ce
nt

ag
e SPEC-FP

 50

 60

 70

 80

 90

 100

mpeg2decmpeg2enclamedjpegcjpegdaudio caudio

P
er

ce
nt

ag
e MEDIA

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Hardware Overhead

Hardware consisting of a tag associated with saturating counter, number

of such tag-counter pair is equal to the number of sets

8-bit tag part of the phase detector contributes the major part in power

The tag part is modeled as a direct-mapped cache tag which is indexed

by the index bits of the address

Our estimation shows that the power overhead averaged over all

benchmarks is around 2% of the power dissipated by the cache

The power consumed by victim buffer is modeled using the SRAM power

model used in Wattch simulator

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Performance with Cache Way Reconfiguration

 0.6

 0.7

 0.8

 0.9

 1

 1.1

vo
rt

ex

tw
ol

f

pe
rlb

m
k

pa
rs

er

m
cf

gc
c

cr
af

ty

gz
ip

bz
ip

2

N
or

m
al

iz
ed

 V
al

ue

SPEC INT

L1-D power
IPC

EDP

 0.6

 0.7

 0.8

 0.9

 1

 1.1

sw
im

m
gr

id

m
es

a

ga
lg

el

fa
ce

re
c

eq
ua

kear
t

ap
pl

u

am
m

p

N
or

m
al

iz
ed

 V
al

ue

SPEC FP

L1-D power
IPC

EDP

 0.6

 0.7

 0.8

 0.9

 1

 1.1

da
ud

io

ca
ud

io

la
m

e

dj
pe

g

cj
pe

g

m
pe

g2
de

c

m
pe

g2
en

c

N
or

m
al

iz
ed

 V
al

ue

MEDIA

L1-D power
IPC

EDP

Figure: IPC and EDP while compared with the base case – 4 way assoc

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Result Summary

Result is reported with all combination of base case configuration

Direct mapped cache is obviously the least in power budget, IPC

performance is worst

2-way set associative cache shows too much variation in IPC and energy

dissipation

Gain over 4-way associative shows that average energy saving in L-1

data cache is 28-32% while the performance (IPC) loss is only 1-2%

The size of additional hardware is approximately 5% of the size of the

cache

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

Conclusions

High associativity in cache improves performance, but a static allocation

of all the cache ways is not energy efficient

Cache utilization metric is derived using conflict miss information from all

cache sets

Runtime behavior of program can be effectively captured by the

hardware phase detector to estimate cache utilization

Way partitioned caches can be configured successfully at runtime for

energy efficiency

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

References

S Borkar.
Design challenges of technology scaling.
In IEEE Micro., Jul-Aug 1999.
4

E. Duesterwald, C. Cascaval, and S. Dwarkadas.
Characterizing and predicting program behavior and its variability.
In. Proc. of Parallel Architecture and Compilation Technique, 2003.
10

Y Sazeides and J E Smith.
Modeling program predictability.
In 25th annual International Symposium on Computer Architecture, 1998.
10

Timothy Sherwood, Suleyman Sair, and Brad Calder.
Phase tracking and prediction.
In In proc. of International Symposium on Computer Architecture, 2003.
13

S Banerjee et. al.

Exploitiong Runtime Program Behavior
Program Phase Directed Cache Reconfiguration

Hardware Phase Detector
Way Selection using Phase Information
Thank You

THANK YOU

QUESTIONS ?

S Banerjee et. al.

	Exploitiong Runtime Program Behavior
	Motivation
	Program Phases

	Program Phase Directed Cache Reconfiguration
	Hardware Phase Detector
	Way Selection using Phase Information
	

