Design Methodology for 2.4GHz Dual-Core Microprocessor

Noriyuki Ito, Hiroaki Komatsu, Akira Kanuma, Akihiro Yoshitake, Yoshiyasu Tanamura, Hiroyuki Sugiyama, Ryoichi Yamashita, <u>Kenichi Nabeya</u>, Hironobu Yoshino, Hitoshi Yamanaka, Masahiro Yanagida, Yoshitomo Ozeki, Kinya Ishizaka, Takeshi Kono, Yutaka Isoda

Fujitsu Limited

Design requirements
CAD system overview
Clock delay calculation
Custom macro design
Test
Conclusions

Design requirements

Design requirements

- High performance
- 2.4 GHz Use of state-of-the-art process 90 nm, 10 layers
- Short design time

about 12 months

SPARC64 VI dual-core microprocessor

Process: 90nm, Cu metallization, 10 metal layers Frequency: 2.4GHz Die size: 20.38mm x 20.67mm Transistor count: 540M Level 2 on-chip cache: 6MB I/O signals count: 412 Power dissipation: less than 120W

CAD system construction

Important issues

 All of user experiences and know-how, which are accumulated in CAD tools, are continuously carried over to the new CAD system.
 Both in-house and EDA vendor tools are appropriately combined.

Design steps in which EDA vendor tools are used

	Design step	Why?
1	Logic simulator, emulator	Tools are mature
2	Editors for cell/macro design, circuit simulator	No competitive advantage with in-house development
3	Noise analysis based on transistors	In-house development is not in time
4	DRC, LVS	Specified as a sign-off tool

CAD system construction (cont'd)

Design steps in which in-house tools are used

	Design step	Why?
1	Logical and physical design rule checkers	Must verify our original design rules
2	Layout, timing analysis	Key tools are preferred to be stable among generations
3	Routing	Need extensive tuning for the state-of-the-art CMOS process
4	Placement, routing	No tools are available for engineered design
5	Noise analysis based on standard cells/macros	Must ensure correct margins
6	Clock design, Power grid design	Capability of EDA vendor tools is insufficient

CAD system construction (cont'd)

Physical handling of cores

Three types of core handling in a chip

Physical handling of cores (cont'd)

Type "flat" has the following pros and cons:

Pros

No characterization

Less computer resources

>More accuracy of analyses

No new hierarchy

>No modification for an existing CAD

>No additional design work in a core level hierarchy

Cons

Cannot handle a core as one instance

Design requirements
CAD system overview
Clock delay calculation
Custom macro design
Test
Conclusions

Clock delay calculation

H-shaped clock distribution

Clock delay calculation (cont'd)

Clock design technique

Clock delay calculation (cont'd)

Correlation between two methods

By SPICE for split		By Elmore for one wire			
	Post route	Steiner	error	Post route	error
Path1	246.5ps	272.1ps	10.4%	255.1ps	3.5%
Path2	144.2ps	148.8ps	3.2%	138.9ps	-3.7%
Path3	181.6ps	183.0ps	0.8%	176.7ps	-2.7%

Error is within 4%!

To Speed up SPICE simulation

- Clock distribution circuit is divided from a root to leaves into several hundreds of groups.
- SPICE simulation takes about 5 hours on a 1.3GHz UNIX server with 5 jobs running in parallel.

Design requirements CAD system overview Clock delay calculation Custom macro design Test Conclusions

Custom macro design tools

Vendor tools and in-house tools

TrTf analysis

Purpose of TrTf analysis

In transistor-level custom logic and peripheral logic of a RAM, rise time (Tr) and fall time (Tf) values are checked.

TrTf analysis (cont'd)

TrTf analysis tool implementation

TrTf analysis (cont'd)

Circuit model for TrTf analysis

TrTf analysis (cont'd)

Execution time in TrTf analysis

Macro	# of Tr	# of R	# of C	CPU time(H)
No.1	12,054	190,740	409,582	0.3
No.2	22,304	319,780	837,945	2.3
No.3	2,056,140	6,421,074	4,777,646	14.5
No.4	1,109,245	3,479,851	2,014,669	10.5
No.5	291,288	3,461,953	8,047,243	27.7

- Design requirements
 CAD system overview
 Clock delay calculation
 Custom macro design
 Test
- Conclusions

The number of test vectors is reduced by 87% by the logic BIST circuit as compared to the conventional scan chains.

Test (cont'd)

Usefulness of good/no-good test in each core

Statistics of test generation and verification of tests

It took about 3 weeks to generate test vectors and to verify them including a delay test.

Generation

Test	# Faults	# Vectors	Coverage	CPU Time (Hours)
SCAN	SCAN 17,216,718		00.7%	0.6
FUNCTION	26,877,639	3,343	99.7%	40.8
RBIST	N/A	N/A	N/A	0.1
DELAY	19,705,662	3,971	91.0%	110.0

Verification

Test	CPU Time (Hours)	Relative Verification Time
SCAN	402.2	21.1%
FUNCTION	12.6	0.7%
RBIST	1452.5	76.3%
DELAY	35.8	1.9%
Total	1903.1	100.0%

- Design requirements
 CAD system overview
 Clock delay calculation
 Custom macro design
 Test
- Conclusions

Conclusions

Conclusions

- Our design methodology is successfully applied to 2.4GHz dual-core microprocessor design.
 - In timing analysis, turn-around-time for modification of the clock distribution circuit is reduced by treating split and shielded wires as one wire.
 - In custom macro design, signal integrity analysis is enhanced. TrTf analysis is very fast and is applicable to large-scale custom macros such as RAMs.

Future work

- We are improving our system for the development of much higher performance microprocessors with 4 or more cores.
- We will focus on statistical timing analysis, power grid analysis, and delay test and diagnosis to improve yield and reliability.